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MODEL-COMPANIONS AND DEFINABILITY IN
EXISTENTIALLY COMPLETE STRUCTURES'

BY
WILLIAM H. WHEELER

ABSTRACT

The theory of model-companions and existentially complete structures is both
reviewed and developed further. The review begins with A. Robinson’s work in
the fifties and continues through the definability of second order structures in
existentially complete groups. New results include necessary and sufficient
conditions for the existence of a model-companion in terms of the definability of
general elementary properties. The main theorem of the paper gives necessary
and sufficient conditions for the existence of a model-companion for universal
theories with finite presentations and the amalgamation property. This result
generalizes the result of P. Eklof and G. Sabbagh that the theory of R-modules
has a model-completion if and only if R is coherent.

The metamathematics of algebra was one of Abraham Robinson’s principal
interests. This was the subject of his dissertation and the focus of his research in
logic until the early sixties. During this period he published four books in
this area: On the Metamathematics of Algebra (1951) [46], Theorie
Métamathématique des Idéaux (1955) [47], Complete Theories (1956) [48], and
Introduction to Model Theory and to the Metamathematics of Algebra (1963) [49].
Two of his important contributions to this area were the concepts of model-
completeness and model-completions. These ideas have led in time to the
investigation of model-companions and the definability of general elementary
properties and second order structures within existentially complete structures,
the topic of this paper.

A structure N is said to the existentially complete for a theory T if i) M is a
substructure of a model of T, and ii) each existential sentence which is defined in
M, i.e., is in the language of M, and is true in a model of T which extends M is

" The author’s survey presentation at the Robinson Memorial Conference included the material
in the first and fourth sections of this paper and Theorem 1 and its corollaries and examples in the
second section. The other results in Section 2 and the results in Section 3 were obtained after the
conference.
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true in I itself. The class of existentially complete structures for T will be
denoted by &r. Some examples of existentially complete structures are listed in
Table 1.

TaBLE 1
Theory Existentially Complete Structures
for the Theory
Fields Algebraically closed fields
Ordered fields Real closed ordered fields
Discretely, nonarchimedean valued Hensel fields
fields
Differential fields Differentially closed fields
Abelian groups Divisible groups with infinitely many
elements of each finite order
Groups Algebraically closed groups
Commutative rings Existentially complete commutative
rings

An elementary property is a property which is defined by a single elementary
formula. A general elementary property [5] is a property which is defined by a set
of elementary formulas. Explicitly, a property P of n elements is a general

elementary property (EP.) if there is a set S of formulas ¢ (vy, - - -, v4) such that
elements a,, - - -, a, of a structure M have property P if and only if M satisfies
¢(ay, -+, a,) for each formula ¢ in S.

A common feature of the first five examples above is that each general
elementary property which is elementary for the existentially complete struc-
tures is elementarily determined for the models of the theory. The situation is
quite different for the latter two examples. For the case of commutative rings,
there is an elementary formula which is satisfied by an element of an existentially
complete commutative ring if and only if that element is not nilpotent (a general
elementary property). In the case of groups, there is an interpretation of second
order number theory within the theory of algebraically closed groups.

The paper is divided into four sections. The first section, historical in nature,
traces the development of the topic from A. Robinson’s work in the early fifties.
The second section discusses the relation between the definability of general
elementary properties and the existence of a model-companion. These theorems
are used in the third section to characterize a class of universal theories which
have model-completions. The result of P. Eklof and G. Sabbagh on model-
completions of R-modules is a consequence of this characterization. The fourth
section describes, albeit briefly, the relevance of definable general elementary
properties to theories without model-companions.
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1. Historical survey

The origin of the recent work on definability in existentially complete
structures can be identified as Abraham Robinson’s investigations of model-
completions in the fifties. A (first-order) theory T* is said to be the model-
completion of a (first-order) theory T if (0) T and T* have the same language, (1)
T* includes T, (2) T and T* are mutually model-consistent, and (3) T*U
Diag (V) is a complete theory for each model M of T (Diag (M) is the set of all
atomic sentences and negated atomic sentences which are defined and true in
). Equivalent formulations of (2) and (3) are (2') each model of T is included in
a model of T* and vice-versa (of course, the vice-versa requirement is satisfied
automatically since T* includes T) and (3') whenever extensions ' and M" of a
model IR of T are models of T*, then I’ and P are elementarily equivalent in
the language of M. Some well-known examples of model-completions are listed
in Table II.

TasLE 11
Theory Model-Completion
Fields Algebraically closed fields
Ordered fields Ordered, real closed fields
Discretely, nonarchimedian Hensel fields
valued fields
Differential fields Differentially closed fields
Abelian groups Divisible abelian groups with
infinitely many elements
of each finite order
Torsion-free abelian groups Divisible, torsion-free abelian
groups
Linear orderings Dense linear orderings with

neither first nor last element

Robinson demonstrated that model-completions lead to simple proofs of
other important results. For example, one can deduce easily that the theory
Tacro Of algebraically closed fields of characteristic 0 is a complete, decidable
theory admitting elimination of quantifiers from the facts that Tacr, is the
model-completion of the theory of fields of characteristic 0 and has a prime
model, the algebraic closure of the rational numbers [49]. Model-completions
lead also to easy proofs for Hilbert’s Nullstellensatz [50], the existence of
uniform bounds on the degree of the polynomials in Hilbert’s Nullstellensatz
[49], and Hilbert’s seventeenth problem [49].
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Nevertheless, the notion of a model-completion is not as inclusive as one
would like, as Robinson noted. Although the theory of ordered fields has a
model-completion, the related theory of formally real fields does not. The reason
is the existence of real closed fields F; and F; such that \/\72 is in F; and

—V2isin F,. Consequently, F, and F; are not elementarily equivalent in the
language of their common subfield Q(V2) [49].

This example motivated the Eli Bers group to introduce model-companions.
A theory T* is the model-companion of a theory T if (0) T and T* have the
same language, (1) T and T* are mutually model-consistent, and (2) T* is
model-complete. If a theory has a model-companion, then that model-
companion is unique up to logical equivalence.

Clearly, a model-completion is also a model-companion, but the converse is
false. The latter assertion is verified by the example of formally real fields. The
theory of real closed fields is model-complete and is mutually model-consistent
with the theory of formally real fields. Thus, the theory of real closed fields is a
model-companion but not a model-completion for the theory of formally real
fields.

In fact, the theory of formally real fields is the paradigm of a theory with a
model-companion but not a model-completion. There is no model-completion
because there is no formally real field F; such that

F;
RN
F, F,
O &
Q(V2)

where F, and F, are the fields mentioned previously. In other words, F; and F,
can not be amalgamated over Q(V2). A theory T is said to have the
amalgamation property if whenever I, M,, and M, are models of T and I, and
M, extend M, then there is a model M, of T extending both M, and IM,. The
following theorem of P. Eklof and G. Sabbagh [25] establishes the theory of
formally real fields as the paradigm.

THEOREM A. Assume that T* is a model-companion for T and that T*
includes T. Then T* is a model-completion for T if and only if T has the
amalgamation property.

This result brought two, related questions to the forefront: (1) What theories
other than those in Table II, for example, groups or R-modules, have model-
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companions? (2) How can one prove that a theory does not have a model-
companion? Both questions are ultimately questions about existentially com-
plete structures, as the following theorem shows.

THEOREM B. A theory T has a model-companion T* if and only if the class
&r of existentially complete structures for T is a generalized elementary class
(EC,), in which case T* = Th(&r).

The first published proof that certain theories did not have model-companions
appeared, to the best of my knowledge, in the paper ‘‘Model-completions and
modules” by P. Eklof and G. Sabbagh [25]. They proved that the class €r when
T is either the theory of groups or the theory of modules over a noncoherent
ring is not closed under ultrapowers and so cannot be a generalized elementary
class. Specifically, they found general elementary properties which are elemen-
tary for the existentially complete structures but not for the theories. The
existence of such general elementary properties entails the absence of a
model-companion, as will be shown in the next section.

2. Definability and model-companions

The problem of existence of a model-companion and the problem of definabil-
ity of general elementary properties for existentially complete structures are, for
many theories, essentially two sides of the same coin. This coincidence will be
spelled out in three steps. First, attention will be restricted to universal theories
and general elementary properties corresponding to quantifier-free types. Then
the coincidence will be discussed for arbitrary theories and general elementary
properties. Finally, these results will be used in the next section to prove a
generalization of the theorem of P. Eklof and G. Sabbagh on model-completions
for modules.

Consider a language with variables v,, v,,---. A (quantifier-free, universal,
respectively) n-type A will be a set of (quantifier-free, universal, respectively)
formulas in this language with free variables among vy, - - -, v.. The conjunction,
possibly infinitary, of the formulas in A will be denoted by A A.

DermniTioN 1. A formula ¢ (vy, - -+, v.) will be said to generate an n-type A
for a class 3 of structures if each structure in X satisfies the sentence
Vo, - Vou.(¢ = A A). A formula will be said to generate an n-type for a theory T
if it does so for the class Mod(T) of models of T.

DEfFINITION 2. An n-type A will be said to be self-generated for a class 3 of
structures if there is a finite conjunction of formulas from A which generates A
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for . An n-type will be said to be self-generated for a theory if it is
self-generated for the class of models of the theory.

DEeFINITION 3. An n-type A will be said to be (existentially) principal for a
class X of structures if there is a (existential) formula ¢ (v,, - - -, v.) such that each
structure in 2 satisfies the sentence Vv, - - - Vv. (¢ <> AA). The formula ¢ will be
called a principal generator for A. An n-type A will be said to be (existentially)
principal for a theory if it is (existentially) principal for the class of models of the
theory.

A general elementary property corresponds to a type. The property is
elementary if and only if that type is principal.

THEOREM 1. If a theory has a model-companion, then each quantifier-free
type which is existentially principal for the theory's existentially complete structures
is self-generated for the theory itself.

Proor. Assume that T is a theory with a model-companion T*. Suppose
that A is a quantifier-free n-type which is existentially principal for the class &
of existentially complete structures for T. Since &r = Mod(T™*), there is an
existential formula ¢ such that T*+Vuv,---Vu, (¢ © AA). Consequently, there
are formulas ¢, - -, ¢, in A such that T*FVo, - Vo, (Y1n- A — ).

Let ¢, be the formula ; A« - - A .. For each formula ¢ in A, T*FVv,-- Vv,
($o— ). Since Yo, - Vv, (Yo— ) is a universal formula and T and T* have
precisely the same universal consequences, T+Y v, Vv, (Yo— ) for each
formula ¢ in A. Hence, A is self-generated for T.

CoroLLarY 1. If a theory has a model-companion, then each quantifier-free
type which is principal for the theory’s class of existentially complete structures is
self-generated for the theory itself.

ProoF. Assume that T* is the model-companion of a theory T. Since T* is
model-complete, each formula is equivalent with respect to T* to an existential
formula. Since & is just the class of models of T*, each principal type for &; is
in fact existentially principal for €.

COROLLARY 2. If there is a quantifier-free type which is not self-generated for
a theory but is existentially principal for the theory’s class of existentially complete
structures, then the theory does not have a model-companion.

The usefulness of Corollary 2 is illustrated in the following examples.
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ExampLE 1. Let T be the theory of groups. Let A = {x"# e : n > 0}, where e
is the constant symbol in T for the identity element of a group (to simplify
formulas, the symbols x, y, and z will be used in place of v,, v;, and vs). This type
is existentially principal for the class of existentially complete groups. ‘A
particular existential, principal generator for this type is the formula 3y 3z.
(yx = x?y a 2x*=x’z A zx # x2) [35, pp. 202-203, 222; or 72, pp. 20-21}.

ExampLE 2. Let T be the theory of division rings of a specified characteristic
p, a prime, or zero. Let A = {q(x)# 0: q(¢) is a monic, irreducible polynomial
over the prime field of the specified characteristic}. An element realizes this type
if and only if it is transcendental over the prime field. Clearly, this type is not
self-generated for the theory T. However, it is existentially principal for the class
of existentially complete division rings. A particular existential, principal
generator for A is Iy 3z (yx = x’y azx®= x’z A 2x # x2) [35, pp. 202-203; or
72].

ExampPLE 3. Let T be the theory of commutative rings. Let A= {x"#0:n >
0}. An element realizes A if and only if it is not nilpotent. This type is not
self-generated for the theory T. Nevertheless, it is existentially principal for the
class of existentially complete commutative rings. A particular existential,
principal generator for A is dy 3z (y*=yay#Oaxz =y) [17].

Theorem 1 has the following, partial converse.

THEOREM 2. Assume that a universal theory T with at least one constant
symbol has the amalgamation property. If each quantifier-free type which is
existentially principal for the theory’s class of existentially complete structures is
self-generated for T, then T has a model-completion.

Proor. It suffices to show that the theory Th(%;) is model-complete, or,
more specifically, that each existential formula is logically equivalent with
respect to Th(%r) to a quantifier-free formula.

Let ¢(vi, -+, v.) be an existential formula: Let V(o) = {¢(vs,- -, v.): ¢ is a
universal formula and Tre — ¢} It is well known that the existentially
complete structures for T satisfy the formula Vv, - - Vo, (¢ ©aV(¢)). Since T is
universal and has the amalgamation property, for each ¢ in V(¢) there is a
quantifier-free formula p(v,, -+, v.) such that T+VYv,- - Vv, (¢ —>p) and
THYv,-- VYo, (p— ) (see reference [1]). Let V(o)={p(vi, -, v.):p is a
quantifier-free formula and T+ ¢ — p}.

Each existentially complete structure for T is a model of T (since T is
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universal), so it follows that each existentially complete structure for T satisfies
the formula Yo, - Vv, (¢ ©AV(p)). In other words, V(¢) is existentially
principal for &, By hypothesis, V(¢) is self-generated for T. Let p, be a
conjunction of formulas from V(@) such that T+p,— p for each p in V(¢).
Again, since each existentially complete structure for T is a model of 7, each
existentially complete structure for T must satisfy the formula Vo, - Vo,
(¢ <> po). Hence, the theory Th(Z&r) is model-complete and is the model-
completion of T.

CoroLLARY 1. Under the assumptions of Theorem 2, the theory of &r permits
elimination of quantifiers.

Proor. This is obvious from the proof of Theorem 2. Also, it follows from a
theorem of A. Robinson [49, p. 236, theor. 9.2.19].

There are comparable results concerning universal types. However, these
results must use the inductive-companion of the theory rather than the theory
itself.

DeriNTION 4. For any theory T, the inductive-companion T of T is defined
by T? = {¢ : ¢ is an V3 sentence and Ty U {¢} is mutually model-consistent with
Tv (or equivalently, with T)}, where Ty denotes the set of universal conse-
quences of T [33; 35, p. 105].

The set T~ is a consistent set of sentences. If T has a model-companion T*,
then T* and T? are logically equivalent. More generally, T? is the V3 theory of
the class &r.

THEOREM 3. Let T be an arbitrary (first-order) theory. If each universal type
which is existentially principal for the class of existentially complete structures for T
is self-generated for T?, then T? is a model-companion for T.

Conversely, if T* is a model-companion for T, then each universal type which is
principal for the class of existentially complete structures for T is self-generated for
T.

Proor. First, assume that each universal type which is existentially principal
for the class & is self-generated for T°. Let ¢(vi, -, v.) be an existential
formula, and let V(@)= {¢(vy,- - -, va) : ¢ is a universal formula and T+¢ — }.
The set V(¢) is an existentially principal type for &r. Consequently, V(¢) is
self-generated for T°. Let ¢, be a finite conjunction of formulas from V(¢) such
that T>FVv; - - - Y. (o— ) for each ¢ in V(). Since &; is included in the class
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of models of T? each existentially complete structure satisfies the sentence
Vo Vo, (Yo— AV(¢)). Also, each existentially complete structure satisfies
the sentence Vv,---VYv, (¢ <> AV(p)). Hence, each existentially complete
structure satisfies the sentence Vv, - - Vv, (¢ <> ). Since this sentence is V3, it
isin T2 Thus, each existential formula is equivalent in T” to a universal formula,
so T? is model-complete. Since T and T are mutually model-consistent, T is a
model-companion for T.
The converse is immediate.

CoroLLARY 1. Ifthere is a universal type which is principal for the class €. but
is not self-generated for &, then T does not have a model-companion.

CoroLLAry 2. (D. Saracino). The theory of metabelian groups does not have
a model-companion.

Proor. D. Saracino [63] proved that the type {Vy Vz (x"# [y, z]): n >0} is
principal for the class &r with generator Vy Vz 3u 3v ([y, z] = [x,[4, v]]) and
that this type is not self-generated. Here [y, z] denotes the commutator y "'z 'yz
of y and z.

3. Model-companions for universal theories with finite presentations

The class of universal theories with finite presentations and the amalgamation
property includes many of the common theories of algebra, for example, groups,
abelian groups, torsion-free abelian groups, R-modules, and Boolean algebras.
The theories in this class which have model-companions are characterized in
Theorem 5 in this section.

Throughout this section T will denote a universal theory.

A model M of T generated by elements ai,- -, a. is said to be finitely
presented if there is a finite set P = {p.(vy, -, v.),"* -, px (01, * * -, v, )} of atomic
formulas such that I satisfies pi(ai, - -+, a,) fori = 1, - -, k, and, for each atomic
formula  p(vy,---,v.), M satisfies p(ai,--,a.) if and only if
TV Vo, [(prA- - Ap)— p]. The set P is called a presentation for IN.

A model It of T generated by elements a,, - - -, a, has a finite presentation
P ={p,,- -+, p}if and only if, whenever a model T’ of T generated by elements
ai, -, a,satisfies p;(ai,---,a;) for i =1,-- -, k, then there is a homomorphism
from I onto M’ determined by sending a; to a' fori=1,--- n.

The theory T will be said to have finite presentations if, for each finite set
P={pi(v1,* ", 0n),* ", P (U1, * *, a)} (k and n arbitrary) of atomic formulas for
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which the sentence 3v;---3v, (p1A--- Ape) Is consistent with T, there is a
finitely presented model of T with presentation P.

In the remainder of this section, the sequences vy, -+, vs, a1, * - *, 4, €1C., May
be denoted by #, a, etc., respectively. The sequences vy, -, Un, Unst,* " 5 Ums
ai, QA Gy, " *, Gm, €1C., may be denoted by o, G, etc., respectively. The

positive diagram of a structure I%, denoted by Diag*({N), is the set of atomic
sentences which are defined and true in .

THEOREM 4. Assume that P ={p\(vi, -, ), ", pu (01, -+, 0u)} is a set of
atomic formulas for which the sentence v, --- v, (py A« - - A pi) is consistent with
T. There is a finitely presented model of T with presentation P if and only if,
whenever o1(v,, "+ +, Us), "+, 0, (U1, - -+, V) are atomic formulas and

THYv, - Vo, [(pra- Aap)—= (ov - vay)],
then TV v, - Vo, [(piA---Ap)— 0.) for some i between 1 and p inclusive.

Proor. Let p(vy,- -, v,) be the conjunction of the formulas in P.
First, assume that T has a model I generated by elements ay, - - -, a. with
presentation P. Suppose that (), - - -, g, (7) were atomic formulas for which

(*) THVE [p—=>(o1v-- v o)

but T¥Vo[p—o:]fori=1,--- p. Then there would be foreachi=1,---,p a
model M, of T generated by elements a,,,---, ai» such that I; satisfied
p(auy, -, a,) and T o:(ay, - -, a..). Since M has presentation P, there would
be a homomorphism of I onto M, sending g; to a;; forj=1,---,ni=1,---,p.
Then M would have to satisfy —oi(a;, -+, a.) for i =1, -, p, since positive
formulas are preserved under homomorphism. But then I8 would satisfy
0@,y a)A AT 0. (ay, - -+, a.) contradicting (*). Hence, there is no
such collection of atomic formulas o4, - -, 0}.

Conversely, assume that whenever THV&[p —(o:v--:vg,)] for atomic
formulas o, (vy, -, U),* "+, 0, (U1, * -, Un), then THYD [p — o;] for some i be-
tween 1 and p inclusive. Augment the language of T by adjoining new constants
a, -, an. Let A be the set of atomic sentences in the augmented language. Let
D*={6:0 isin A and Tt+p(a)—> 6}, and let D ={—6:6 is in A and
T¥p(a)— 8}.

The set TUD*U D" is consistent. To verify this, suppose that it is not
consistent. Then there are sentences 8,,---,6, in D" and sentences
—6,41,- -+, 10, in D such that TF—(6,A---A6, A1 6,.:A---A716,). Then
TH@A - A0)—>(6,av - V). Since 6:,---, 0, are in D",
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Trp(a)~>(6,.1v---v8;). By assumption, T+p(a)— 6; for some i between
r+1 and s inclusive. But this contradicts that — @8, is in D~. Hence,
TUD*UD" is consistent. Let 3t be a model of TUD*U D", Let IR be the
substructure of N generated by a,, - - -, a,. Since T is universal, IR is a model of
T. Moreover, Diag(M)= D" U D". Hence, M has presentation P.

CoroLLARY 1. Every universal-Horn theory has finite presentations.

ProoF. Suppose that P ={pi(vy,- -+, v.)," - -, p (U1, - * -, U )} is a set of atomic
formulas for which 3v,- - 3v, (p,A- - - A pi) is consistent with a universal-Horn
theory T. Suppose that o(v,***, Ua),* * +, 0, (01, - * -, V) are atomic formulas for
which

THYS[(pin - Ap )= (01v -+ v )]
but
T,yVﬁ[(pl/\..-/\pk)—-)a'i] for i=1,---,p

Let M; for i =1,---, p be the models described in the preceding proof for this
situation. Let I be the submodel of IT°., MM, generated by the elements

a:= (a1, @21 ", Gp),** * @ = (@i Q2w * * *, @ ). Then M is a model of T and
M satisfies
pi@n, @A AP (81, @) AT Gy (@1, @) A AT 0, (- )

contradicting the choice of o, -, 0,.

DermiTiOoN 5. A theory with finite presentations will be said to be coherent if
each finitely generated submodel of a finitely presented model is finitely
presented itself.

A theory is said to have the congruence extension property if whenever M, N,
and N’ are models of the theory and g : ¢ — M is an injective homomorphism
and h : N — N’ is a surjective homomorphism, then there is a model M’ of the
theory, an injective homomorphism g : 9%’ — I, and a surjective homomor-
phism & : I — D such that goh =hog.

A theory is said to have the homomorphism lifting property (also known in the
literature as the injections transferable property) if whenever I, N, and N’ are
models of the theory, g : t — MM is an injective homomorphism, and h : N — N’
is a homomorphism, then there is a model T’ of the theory, an injective
homomorphism g : ' — I, and a homomorphism h : M — W' such that goh =

hog.
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If a universal theory has the amalgamation property and the congruence
extension property, then it has the homomorphism lifting property. If a universal
theory has the homomorphism lifting property, then it has the congruence
extension property.

ProrosiTiON 1. If a universal theory with finite presentations has the
homomorphism lifting property, then it has the amalgamation property.

Proor. Assume that T is a universal theory with finite presentations and the
homomorphism lifting property. Suppose that I, P, and IM” are models of T
and that I’ and " extend . It suffices to show that T U Diag (') U Diag (P")
is consistent, where the same constant symbols are used in both Diag (%) and
Diag (") to denote elements of P and Diag (M) and Diag (IM") have no other
constant symbols in common. Since T has the homomorphism lifting property,
T U Diag (') U Diag” (M") and T U Diag™(P¢') U Diag (M") are consistent. Sup-
pose that T U Diag (') U Diag (") is inconsistent. Then there are sentences
P1s" "y P VPgsr, 7, —1p, in Diag (M) and sentences o, -+, 0, V041,
— g, in Diag ("), where the p; and o; are atomic, such that

TEO[PiA - AP AT PgraA AT P AGIA " AG AT Cop At - AT O]

Then

TH(piA AP ATIA AT ) (pgrV VP, VOV V)]
Since T has finite presentations, T U{pi," -+, ps, 01, * *, 0, } must imply one of
Pa+1, " *5 Py Os1, ° * *, 0, But none of p,.4, - -, p, can be implied thusly, because

T U Diag (') U Diag™ (") is consistent. Likewise, none of o;.1, -+, o, can be
implied thusly, because T U Diag* (') U Diag(M") is consistent. Hence, T U
Diag (') U Diag (M") is consistent.

DeriniTioN 6. A theory T will be said to have the conservative homomor-
phism lifting property (conservative congruence extension property) if whenever i
and I are models of T, M extends N, ¢ (v1, - - *, Vuy Vass, * * *, U ) is @ conjunction
of negated atomic formulas, and N satisfies Y(ay, -, Gn, Gner, "~ am) for
elements a,, -+, a. of N and elements a,.,***, an in P but not N, then
there is a quantifier-free formula x(v,---,v.) such that TU
Diag* (M) F(as,**+, Qny Anery** s @m )= x(@1," -, a.) and if h:N->N' is a
homomorphism (surjective homomorphism, resp.) and RN’ satisfies
x(h(a.), -, h(a.)), then there is a model IM' of T which extends N’ and a
homomorphism (surjective homomorphism, resp.) i :IM— M’ such that the
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restriction of A to N coincides with h and M’ satisfies ¢(h(a,), -, h(a.),
h(aus), -, R(am)).

DerFiNITION 7. A theory T will be said to have the conservative homomor-
phism lifting property for finite presentations (conservative congruence extension
property for finite presentations, respectively) if the preceding definition holds
with the additional restrictions that IR is generated by ai, - -, a,, Guers** *, Gm
with some finite presentation P and M is generated by a,,- -, a..

A theory with the amalgamation property or the homomorphism lifting
property has the conservative homomorphism lifting property (for finite presen-
tations) if and only if it has the conservative congruence extension property (for
finite presentations, respectively).

A theory with finite presentations has the conservative homomorphism lifting
property (for finite presentations) if and only if it has the amalgamation property
and the conservative congruence extension property (for finite presentations,
respectively).

The main theorem of this paper is the following.

THEOREM 5. Assume that T is a universal theory with finite presentations, at
least one constant symbol, and the amalgamation property. The theory T has a
model-completion, or equivalently a model-companion, if and only if T is coherent
and has the conservative congruence extension property for finite presentations.

Proor. (i) Assume that T has a model-completion T*. Let R be a finitely
generated submodel of a finitely presented model I of T. Assume that N is
generated by elements a,,---, a, and that I is generated by the elements
a,,- -, a, together with elements a,.;,---, a,» (not in N) with presentation
P={pi(vs," " ", Oy Uns1,"" ", Um), ", s (U2, " " ", Uny Uns1, " "+, Um)}. Let p be the
conjunction piA---Ape. Let ¢ (v, -+, vs) be the formula 3v,.(---Ju.p.

Since T* is the model-completion of T, T* permits elimination of quantifiers
(theor. 1 and corol. 1 to theor. 2, or theor. 9.2.19 of reference 49, p. 236). Let
8(vy, - -+, va) be a quantifier-free formula such that T*FVuv,--- Vo, (¢ < 6).
One may assume without loss of generality that 6 is a disjunction 6;v---v 6,
where each 6, is a conjunction of atomic formulas and negated atomic formulas.
Since M is included in a model of T*, N must satisfy 6,(a) for some i. Let
oy, -, 0, be the positive conjuncts of 6; for this i. Let R’ be the model of T
generated by elements ai,---,a, with presentation {oy,---, 0,}. There is a
homomorphism of ' onto N sending a to a. Therefore, N’ satisfies
8.(ai.- -, ay) for the i specified above. Since R’ is included in a model of T*,
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there is a model I’ of T which extends N’, is generated by the elements
ai,- -+, a, together with elements a@..,* -, am, and satisfies p(a@'). There is a
homomorphism of M onto M’ sending 4; to a}, since P is a presentation of IN.
Thus, N and N’ are isomorphic. Hence, {04, - - -, 0} is a finite presentation for N.

Now suppose that (vs, - *, Un, Un+1, * * *, Um ) IS @ conjunction of negated atomic
formulas and that I satisfies ¢ (@). Let x(vy, - - -, v, ) be a quantifier-free formula
for which

T*EV v V0, [(Q0nss - v (p(5) A Y (D)) © x (7)].

Since T and T* have the same universal consequences, T U
Diag* (M) ¢(d)— x(a). Suppose that N” is a model of T generated by elements
a¥,---, ay and that there is a homomorphism of N onto N” sending g; to a.
Suppose further that N” satisfies x(a"). The structure N” has an extension IM"
which is a model of T*. There are elements an.y,- - -, an of IM” for which M”
satisfies p(a”")a¢(a”). Let I be the submodel of T generated by
al,---,a at., -, an There is a homomorphism of I onto IM" sending a; to
a’j, because P is a presentation of .

Thus, T is coherent and has the conservative congruence extension property
for finite presentations.

(it) Assume that T is coherent and has the conservative congruence extension
property for finite presentations. A model-completion for T will be constructed.

Suppose that ¢(v,,---,v.) is a primitive existential formula such that
Jv,---3v, ¢ is consistent with T. Then ¢ has the form

3vn*—l' * .va [Pl(vb *ty Uny Un+1y y vm)/\ e A
(1) pk(vl’ Uk Unwgy 700 U"‘)A—I 0'1(01, 0ty Uy Unnry ** vm) A A
_10',,(111, 0y Uny Untts " " 0y vm)]

where the p; and o; are atomic. The theory T has a model IR generated by
elements ay,- -+, G, Gnss,  * *, @m With presentation {p,,- -, pc}. The model M
must satisfy —1o.(d)A-- A7 0,(a). Let N be the submodel generated by
a,, -, a. Since T is coherent, N is finitely presented. Let 6(vy, -+, v.) be a
conjunction of a finite presentation for . Let ¢(vy, -, Un, Uns1," * *, Um) be the
formula —o(8) A+ A 0,(D), and let x(v,, - - -, v.) be the formula described
in the definition of the conservative congruence extension property for this
choice of M, N, and ¢. Let A(¢) be the formula

Vo, Vo, [e(v, 5, 0a) < (0(v1, -+, 0a) A X (V1,0 + 7, 00))).

Let T*=TU{A(¢): ¢(vy," -, v.)is a primitive existential formula for which
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Jv,---Av.e is consistent with T}. In order to verify that T* is the model-
completion of T, it will suffice according to Theorem A to show that each model
of T is included in a model of T* and that T* is model-complete.

Let IR, be an existentially complete structure for T. Let ¢(v;,---, v.) be a
primitive existential formula for which 3v, - - - 3v, ¢ is consistent with 7. Assume
that ¢ has the form in (1). Suppose that I, satisfies ¢ (ai,: -, a}) for some
elements a},---,a, Let a,.., -, a. be elements of M, for which M, satisfies
p@)AAp (@)A1 a@)A--A10,(@'). Let P be the submodel gener-
ated by ai, - -,an @, ", anm and let ' be the submodel generated by
ai, -, a. The model JM' is a homomorphic image of M. The same homomor-
phism maps N onto N'. Since 8 is the conjunction of a presentation of N, the
model N’ satisfies 6(ai, -, a,). The formula y was chosen so that T U
Diag* (M) F ¢ (as,** +, @n, Aners - " *5 Am )= x(@1,* -, ax). Since PM' is a model
of Diag*(M), W'  satisfies y(ai,---,ar). Thus, M  satisfies
6(ai, -, awAx(ai,- -, an),so M, satisfies this (quantifier-free) sentence also.

Suppose now that I, satisfies 6(a’, - -, an) A x(afl,- - -, a’) for some elements
ay, -+, an Let N" be the submodel generated by a,: -, a’. Since N” satisfies
#(a’%, - - -, a%), there is a homomorphism of i onto N” sending a; to a’l. Since N”
satisfies y(a?, - -, av), there is a model " of T which extends N”, is generated
by the elements af,-- -, a, together with elements ay..,---, an, and satisfies
¢(a"), and there is a homomorphism from I onto M" sending a; to a’.
Therefore, M” satisfies p(@")A---Ap (@)A1 (@")A" - A1 0, (@"). There is
a model M, of T which extends both M, and M”, since T has the amalgamation
property. The model I, satisfies ¢ (al, -, ay). Since WM, is existentially com-
plete, it satisfies ¢ (al,- -, an) also. Thus, I, is a model of A (¢).

Thus, each existentially complete structure for T is a model of T*. Since each
model of T is included in an existentially complete structure, T* is mutually
model-consistent with T.

If ¢ (vy, - - -, v.) is an existential sentence such that v, - - - v, ¢ is inconsistent
with T, then T implies Vv, - - Vv, [¢ <> —1(c = ¢)], where c is a constant symbol
occurring in T. Thus, each existential formula is equivalent in T* to a
quantifier-free formula. Hence, T* is model-complete.

CoroOLLARY 1. Assume that T is a universal theory with finite presentations, at
least one constant symbol, and the amalgamation property. If the language of T
contains at most finitely many predicate symbols (but may have arbitrarily many
constant symbols and function symbols) and every finitely generated model of T is
finite, then T has a model-completion.
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Proor. Since every finitely generated model is finite, T is coherent.
Moreover, T has the conservative congruence extension property for finite
presentations, because each finitely generated structure has only a finite number
of homomorphic images.

COROLLARY 2. The theory of Boolean algebras has a model-completion.

Proor. The theory of Boolean algebras satisfies the hypotheses of Corol-
lary 1.

CororLary 3 (G. Sabbagh [61], R. Cusin and J. R. Pabion [22], and D.
Saracino). The theory of p-rings for each prime p has a model-completion.

Proor. G. Sabbagh [61] proved that the theory of p-rings for a prime p has
the amalgamation property. Consequently, this theory satisfies the hypotheses of
Corollary 1.

CoroLLARY 4 (P. Eklof and G. Sabbagh [25]). The theory of groups does not
have a model-companion.

Proor. The theory of groups satisfies the hypotheses of Theorem 5. It is well
known from Higman’s Theorem that there is a finitely presented group with a
finitely generated subgroup which is recursively presented but not finitely
presented. Consequently, this theory is not coherent and so does not have a
model-companion.

The proof of the preceding corollary is interesting, because all previous proofs
of the corollary showed essentially that the theory of groups did not have the
conservative congruence extension property for finite presentations.

The verification of the conservative congruence extension property for finite
presentations is tedious for most interesting theories with this property. Exam-
ples are the theory of abelian groups and the theory of R-modules. This has led
to the introduction of the model-cancellation property defined below. The
verification of this property is usually straightforward.

DermniTiON 8. A theory T will be said to have the model-cancellation
property if whenever ! and IR are models of T, I extends N, p is a conjunction
of atomic sentences defined in 3N such that T U Diag*(N) U {p} is consistent, o is
an atomic sentence defined in I but not true in W, and T U Diag* (M)t p — o,
then there is a positive, quantifier-free sentence y defined in < such that
T UDiag" (M) xy e 0.
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Of course, a model-cancellation property for finite presentations could be
defined in a manner analogous to that for the conservative congruence extension
property for finite presentations.

THEOREM 6. Assume that T is a universal theory with finite presentations, at
least one constant symbol, and the congruence extension property. If T has the
model-cancellation property, then T has the conservative congruence extension
property.

Proor. Assume that T has the model-cancellation property. Let

Y(v1," ", Uny Unsr, " *, Um) be a conjunction

—la-l(vl’. ) Upy vn+1,' - Um)/\' CeATY O, (vl,. C o Upy Unag, * 7y Um)
of negated atomic formulas —1 ¢, - - -, 71 0,. Suppose that I and N are models of
T, M extends N, ai, - - -, a. are elements of N, @.+1,* - *, a are elements of M but
not N, and M satisfies & (a, -, A, Ans1, " * 5 m ).

Consider the formula o,. Choose a formula y; as follows.

Case 1. There is a conjuction p of atomic sentences defined in 9 such
thatT U Diag* (M) U{p} is consistent and implies o.(a). Since T has the
model-cancellation property, there is a positive, quantifier-free formula
x«(v1, "+, v} such that

T UDiag" (M) xi(as, -, a.) 0@y, 5 Gny Qusry* " *, Qm ).

Case 2. There is no such formula p. Choose x: to be the formula —(c = ¢)
where ¢ is a constant symbol occurring in T.

Choose formulas x2(vi,- -, 0.), ", xp (01, +,0,) in a similar manner. Let
x (v, -, v,) be the formula — y, A--- A1 x,. Clearly, by the choice of the y,
T UDiag (T Fg(ay, -+, Gu Qnsry 75 Gm )= X (@1, * +, Gn ).

Suppose now that i : # — N’ is a homomorphism of N onto N’ and that N’
satisfies x(h(a,), - -, h(a.)). Interpret the constants in the language of I which
name elements of N to name the corresponding images of these elements under
h also. Since T has the congruence extension property, T U Diag*(IR)U
Diag(') is consistent. Suppose that this set of sentences implies — (). Then
there are atomic sentences 0;,---, 6, in Diag*(I®), and atomic sentences
p1, " -+, p and negated atomic sentences =1 p,,,, - - -, —1 p, in Diag (N’) such that

TH(B1A  AOAPIA- AP AT P A AT p ) (@) V- - v 0, (d))].

Then
TH(O:A- - ABApiA--Ap)= (V- v vai(d)V--va,(d))].
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According to Theorem 4, TU{8,,- -, 6, p1, - -, p.} implies one of p,.1," -, ps,
oa), :-,0,(a). But none of p,.,, -+, p. could be implied, since T U
Diag*(IR) U Diag(N') is consistent. Therefore, d;(a) for some i between 1 and p
inclusive is implied. Consequently, T UDiag"(MR)F(piA---Ap.)— 0i(ad).
Therefore, Case 1 above was used to choose the corresponding y;, so T U
Diag* (M) F xi(ay, -+, an) < 0i (a1, * *, Any Ana1, " *, @m ). Since —x(a) is in
Diag(?'), T UDiag*(M)U Diag(M')F —o:(a). But then T UDiag*(M)U
Diag (') implies both (@) and — 0,(a), which contradicts the consistency of
this set of sentences.

Hence, T U Diag*(IM) U Diag(M)U{¢(as, ", @n, Qns1, " *, Am )} IS consistent.
Therefore, there is a model MM’ of T which extends N’ and a homomorphism & of
M onto IM' such that the restriction of A to N is just h and W' satisfies
$(h(ar), -+, h(an), h(ann), "+, h(am)).

CoroLLARY 1 (P. Eklof and G. Sabbagh [25]). The theory of R-modules has
a model-completion if and only if R is coherent.

Proor. The theory of R-modules has finite presentations, at least one
constant symbol, the amalgamation property, and the congruence extension
property, and therefore the homomorphism lifting property; all this is well
known. Moreover, the theory of R-modules has the model-cancellation prop-
erty. To verify this, suppose that 9 is a submodule of an R-module I, p,, - - -, p,
are atomic sentences defined in i, o is an atomic sentence defined in IR but not
true in M, and T U Diag (M) F(ps A - - A p;) = 0. Each p; has the form 3r;a; =
S.su by where the r; and sy are elements of R and the a; and bi are elements of
N. Let R be the submodule generated by the elements Xrja; — Ssubu for
i=1,---,q.Since the a; and b are elements of N, R is a submodule of N. The
sentence o has the form Xr,a; = s.b. where the r; and s, are elements of R and
the a; and b, are elements of M. Since T U Diag™ (M) + (p. A - -+ A p;)— o, there
is an element ¢ of R such that WM satisfies Zra; = Ssib +¢. Then
T U Diag* (M) (Zra; = Tsib ) <> (¢ = 0).

One of the equivalent conditions defining a coherent ring [11, pp. 62-63,
problems 11-12] is that each finitely generated submodule of a finitely presented
module is finitely presented itself. Hence, the corollary follows from Theorems 5
and 6.

4. Further applications of definable, general elementary properties

When a theory does not have a model-companion, a series of questions arises
concerning the class of existentially complete structures and its various subclass-



Vol. 25, 1976 MODEL-COMPANIONS AND DEFINABILITY 323

es. Definability of general elementary properties is usually relevant to the
resolution of these questions. One question is whether every existentially
complete structure is both finitely generic and infinitely generic; a weaker
question is whether the finite forcing companion coincides with the infinite
forcing companion (see [35] or [53] for definitions). The following theorems
indicate the relevance of definability for these questions.

THEOREM 7. Assume that T is a countable, first order theory. If A is a
universal type which is not existentially generated, then there is an existentially
complete structure, in fact, a finitely generic structure which omits this type.

ProoF. Augment the language of T with an infinite set A = {a,, : m < w} of
new constant symbols. Assume that A is an n-type. Let {{. :m <w} be an
enumeration of all n-tuples of constants in the augmented language. Let
{¢m : m < w} be an enumeration of all the sentences in the augmented language.
Construct a complete sequence of forcing conditions as follows.

Step 0. Let Py={ao= ao}.

Step 2m +1. If P, finitely forces ¢. or ¢, then let Pi,.,= P,
Otherwise, there is a condition Q containing P,,, which does finitely force ¢.,;
let Pysy = Q.

Step 2m +2. Let A5(A P2m.y) be the formula obtained by replacing distinct
constants occurring in P,,., but not in ¢, by distinct variables, forming the
conjunction of the resulting formulas, and then existentially quantifying over the
variables introduced. Since A is not existentially principal, there is a formula
$(v, -+, 0.) in A such that T F3I0(APyma)=>(Cr, -+, ¢a) where (.=
(¢1,° -, cn). We may assume that =1 y(c,,- -, c.) is a disjunction of primitive
sentences, namely (¢, -, ¢)v - vxs(ci, -+, c.). Then xi(ci, -, c.) for
some i is consistent with T U P,,,.,. Substitute distinct constants from A which
do not occur in P, o1 xi(ci, - - -, ¢, ) for the variables occurring in the matrix of
xi(c1, -+, ¢.). Let Pa, ., consist of the conjuncts of the resulting matrix together
with the formulas in P,,.,. Then P,,.., is consistent with T, so P,... is a
condition containing Pz...

The sequence of conditions P, C P, C--- is a complete sequence of forcing
conditions. Hence, it determines a unique, finitely generic structure. That this
structure omits the type A is evident from the even numbered steps.

THEOREM 8. Assume that T is a countable theory with the joint embedding
property. If there is a universal type which is principal but not existentially principal
for the class of existentially complete structures for T and is realized in one of these
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structures, then the finite forcing companion T’ and the infinite forcing companion

TF are distinct, complete theories.

Proor. Since T has the joint embedding property, both T/ and T are
complete theories. Let ¢(7) be a generator for the type mentioned in the
hypotheses. This type must be realized in some infinitely generic structure, so TF
includes the sentence 3o (D ). On the other hand, this type cannot be existen-
tially generated for T, so there is a finitely generic structure which omits this

type. Hence, T’ contains the sentence Vo —1¢ (D).

Types which satisfy the hypotheses of the preceding theorem have been found
for the theories of groups [35, 72], metabelian groups [63], nilpotent groups (D.
Saracino), commutative rings [17], division rings [35, 72], and arithmetic [34, 35].

Diagram I presents some of the questions which arise for a theory without a
model-companion. The diagram also indicates which questions are subordinate
to others. Whenever a question has a negative answer, the questions beneath it
remain to be answered.

DiaGram |
QUESTIONS CONCERNING EXISTENTIALLY COMPLETE STRUCTURES

Is there a model-completion?

I

Is the amalgamation property satisfied? Is there a model-companion?

[
Is Fr =%y = 4,?
1

F I T l
Is T =TF? How many elementary equivalence What is the status Is %
classes of existentially of the approximating  axiomatized
complete structures are there? chains for 4;? by a sentence

' l of L7

|

Are there arbitrarily What is the minimal What are the What is the minimal
large, finitely generic quantifier complexity degrees of degree of unsolvability
structures? of a sentence which unsolvability of the diagram of an
distinghishes between of T, TF existentially complete
Tf and TF? and Th(&;)? structure?

The definability of general elementary properties and, in some cases, the

resulting interpretation of second order arithmetic have led to answers to most
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of these questions for some theories. Consider, for example, the question of the
number of elementary equivalence classes of existentially complete structures.
The following theorem [35, p. 130; 72, p. 53] relates this problem to degrees of
unsolvability.

The set of Gédel numbers of a countable set § of formulas will be denoted by

[s].

THEOREM C. Assume that [T] is an arithmetical set. If the set {[T"]: T' =
Th(IN) for some I in €+} has cardinality less than 2™, then the set is countable,
each member of the set is hyperarithmetical, and Th(%r) is hyperarithmetical.

The set [TF] for the theories of arithmetic [34, 35], groups [35, 72], and
division rings [35, 72] has been shown to have the same degree of unsolvability as
the theory of full second order arithmetic. Hence the set of theories of
existentially complete structures for these theories has cardinality 2". Also,
Th(%;) for these theories is a complete 1] set.

In passing, it should be remarked that the cardinality of the set of theories of
existentially complete structures is either countable or the continuum regardless
of whether [T is arithmetical [28]. Examples [28, 65, 68] show that this is the
only restriction on the cardinality of this set for countable theories.

The theory of groups is an example for which all questions in the diagram are
relevant. As previously mentioned, P. Eklof and G. Sabbagh [25] proved in 1969
that there was no model-companion. A. Macintyre proved in 1970 that &€;# %r
and &r# %r [37]. Subsequently, he proved that 77 and T are distinguished by
an V, sentence. In 1972 the author found a principal existential generator for the
quantifier-free type of having infinite order [35, 72]. This leads to the following
interpretation of second order arithmetic. Let G be an existentially complete
group. This group has an element a of infinite order. The set {a" :n =0} is
definable, and there are definable operations @ and & such that a" @ a™ =
a”™ and a" ® a™ = a"™". Moreover, there is a well determined collection & of
subsets of {a" : n = 0}. The set {a" : n = 0} with the operations @5 and & and the
collection & of subsets forms a definable structure N; for second order
arithmetic. This second order structure is uniquely determined independently of
the choice of the element a of infinite order, because all elements of infinite
order are conjugate.

TueoreM D [35, 72). If G is an infinitely generic group, then N is a second
order elementary substructure of the standard model N for second order arithmetic.
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Hence, [Th,(N)] =.[T"], where Th, denotes the second order theory. In fact,
[Tho(N)] = [T"].

THeOREM E [35,72]). There are 2" elementary equivalence classes of existen-
tially complete groups distinghished by V, sentences.

Analogous results have been obtained for arithmetic [34, 35] and division rings
[35, 72].

O. V. Belegradek, a Russian mathematician, has communicated the follow-
ing, more recent results on existentially complete groups to the author: 1) there
are 2™ elementary equivalence classes of existentially complete groups distin-
guished by Vs sentences: 2) T* and T” are distinguished by an V; sentence; and
3) an existentially complete group is finitely generic if and only if it is a model
of T'.

Appendix

A list of references according to topic appears below.

1. General theory of forcing, model-companions, and existentially complete
structures: for a comprehensive discussion, see [35]; other references: 3, 8, 14,
15, 18-22, 27, 28, 36, 38, 41, 51-55, 62, 64, 65, 68, 71, 72, 73].

Arithmetic: (3, 34, 35, 45, 56].

Modules: [25, 26, 58-61].

Abelian groups: [23, 24, 25].

Groups: [25, 37, 38, 40, 42, 35, 72).

Division rings: [7-9, 35, 39, 40, 42, 72].

Commutative rings: [17].

Commutative rings without nilpotent elements: [13, 67].
. Metabelian groups: [63].

10. Nilpotent groups: [66].

11. Lie algebras: [43, 44].

© PN AW

Remarks added in proof

1) It is implicit in Section 3 that a finitely generated model which has a finite
presentation relative to one finite set of generators has a finite presentation
relative to any finite set of generators. This is easily verified. Assume that IR is
generated by elements Ay, ", QAn with finite presentation
{p:(vs, -, 0a),+, pe (U1, +, 1,)}. Suppose that by, ---, b, generate I also.
Then there are terms £,(vy,"**, Un), " * -, tm (U1, - * *, U, ) such that b, = t;,(a, -, a.)
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for j =1, -, m, and there are terms u(v,, -+, Un ), *, Un (01, - * -, U, ) such that
a = u(b, -, b,) for i=1,---,n. A presentation for IM relative to the
generators by, - -, b, is

{pi(ul(vh' T Um),' : ',ll,,(U1, T l),,.)): i=1-- ’k}U
{Ui = ti(ul(vl, s, vm)’. s un(vl’. ce, vm)): i = 1’. . .’m}.

2) G. Sabbagh has proven that every universal theory with finite presentations
is in fact universal Horn. Thus, a theory is universal with finite presentations if
and only if it is universal Horn.

3) The assumption in Theorem 5 that T has finite presentations can be
weakened so as to include non-Horn theories such as the theory of integral
domains. This improvement will appear in a forthcoming paper by the author in
which Theorem 5 is generalized to theories which may not have the amalgama-
tion property.

4) The proof of Corollary 4 to Theorem 5 referred to Higman’s Theorem for
the existence of a finitely presented group with a finitely generated, nonfinitely
presentable subgroup. G. Sabbagh has kindly pointed out that such groups were
known prior to the appearance of Higman’s Theorem (see Section 4 of G.
Baumslag, W. W. Boone and B. H. Neumann, Some unsolvable problems about
elements and subgroups of groups, Math. Scand. 7 (1959), 191-201).
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