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MODEL-COMPANIONS A N D  DEFINABILITY IN 
EXISTENTIALLY COMPLETE STRUCTURES* 

BY 

W I L L I A M  H. W H E E L E R  

ABSTRACT 

The  theory  of m o d e l - c o m p a n i o n s  and  ex is ten t ia l ly  c o m p l e t e  s t ruc tu res  is bo th  

reviewed and developed further. The review begins with A. Robinson's work in 
the fifties and continues through the definability of second order structures in 
existentially complete groups. New results include necessary and sufficient 
conditions for the existence of a model-companion in terms of the definability of 
general elementary properties. The main theorem of the paper gives necessary 
and sufficient conditions for the existence of a model-companion for universal 
theories with finite presentations and the amalgamation property. This result 
generalizes the result of P. Eklof and G. Sabbagh that the theory of R-modules 
has a model-completion if and only if R is coherent. 

The  m e t a m a t h e m a t i c s  of a lgebra  was one  of A b r a h a m  R o b i n s o n ' s  p r inc ipa l  

in teres ts .  This  was the  sub jec t  of his d i s se r ta t ion  and  the  focus of his research  in 

logic unti l  the  ear ly  sixties. Dur ing  this p e r i o d  he pub l i shed  four  b o o k s  in 

this a rea :  On the Metamathematics of Algebra (1951) [46], Theorie 
Mdtamath~matique des Id~aux (1955) [47], Complete Theories (1956) [48], and  

Introduction to Model Theory and to the Metamathematics of Algebra (1963) [49]. 

Two of his i m p o r t a n t  con t r ibu t ions  to this  a rea  were  the  concep ts  of mode l -  

comp le t enes s  and  m o d e l - c o m p l e t i o n s .  These  ideas  have  led in t ime to the  

inves t iga t ion  of m o d e l - c o m p a n i o n s  and  the  def inabi l i ty  of gene ra l  e l e m e n t a r y  

p rope r t i e s  and  second  o r d e r  s t ruc tures  within exis ten t ia l ly  c o m p l e t e  s t ructures ,  

the  topic  of this  pape r .  

A s t ruc ture  ~R is said to the  existentially complete for a theory T if i) ~92 is a 

subs t ruc tu re  of a m o d e l  of T, and  ii) each ex is ten t ia l  s en tence  which is def ined  in 

~IR, i.e., is in the  l anguage  of  ~R, and  is t rue  in a m o d e l  of  T which ex tends  ~ is 

t The author's survey presentation at the Robinson Memorial Conference included the material 
in the first and fourth sections of this paper and Theorem 1 and its corollaries and examples in the 
second section. The other results in Section 2 and the results in Section 3 were obtained after the 
conference. 
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true in ~02 itself. The class of existentially complete structures for T will be 

denoted by ~'r. Some examples of existentially complete structures are listed in 

Table I. 
TABLE I 

Theory 

Fields 
Ordered fields 
Discretely, nonarchimedean valued 

fields 
Differential fields 
Abelian groups 

Groups 
Commutative rings 

Existentially Complete Structures 
for the Theory 

Algebraically closed fields 
Real closed ordered fields 
Hensel fields 

Differentially closed fields 
Divisible groups with infinitely many 

elements of each finite order 
Algebraically closed groups 
Existentially complete commutative 
rings 

An elementary property is a property which is defined by a single elementary 

formula. A general elementary property [5] is a property which is defined by a set 

of elementary formulas. Explicitly, a property P of n elements is a general 

elementary property (EPA) if there is a set S of formulas ~(v~,--. ,  vn) such that 

elements al, �9 �9 ", an of a structure ~0~ have property P if and only if ~0~ satisfies 

~p(a~,..., a , )  for each formula q~ in S. 

A common feature of the first five examples above is that each general 

elementary property which is elementary for the existentially complete struc- 

tures is elementarily determined for the models of the theory. The situation is 

quite different for the latter two examples. For the case of commutative rings, 

there is an elementary formula which is satisfied by an element of an existentially 

complete commutative ring if and only if that element is not nilpotent (a general 

elementary property). In the case of groups, there is an interpretation of second 

order number theory within the theory of algebraically closed groups. 

The paper is divided into four sections. The first section, historical in nature, 

traces the development of the topic from A. Robinson's work in the early fifties. 

The second section discusses the relation between the definability of general 

elementary properties and the existence of a model-companion. These theorems 

are used in the third section to characterize a class of universal theories which 

have model-completions. The result of P. Eklof and G. Sabbagh on model- 

completions of R-modules is a consequence of this characterization. The fourth 

section describes, albeit briefly, the relevance of definable general elementary 

properties to theories without model-companions. 
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1. Historical survey 

The origin of the recent work on definability in existentially complete 

structures can be identified as Abraham Robinson's investigations of model- 

completions in the fifties. A (first-order) theory T* is said to be the model- 
completion of a (first-order) theory T if (0) T and T* have the same language, (1) 

T* includes T, (2) T and T* are mutually model-consistent, and (3) T*t.J 

Diag (~J~) is a complete theory for each model ~ of T (Diag (~1)2) is the set of all 

atomic sentences and negated atomic sentences which are defined and true in 

92E). Equivalent formulations of (2) and (3) are (2') each model of T is included in 

a model of T* and vice-versa (of course, the vice-versa requirement is satisfied 

automatically since T* includes T) and (3') whenever extensions ~ '  and ~ "  of a 

model ~R of T are models of T*, then ~R' and ~1)2" are elementarily equivalent in 

the language of ~IR. Some well-known examples of model-completions are listed 

in Table II. 

TABLE II 

Theory 

Fields 
Ordered fields 
Discretely, nonarchimedian 

valued fields 
Differential fields 
Abelian groups 

Torsion-free abelian groups 

Linear orderings 

Model-Completion 

Algebraically closed fields 
Ordered, real closed fields 
Hensel fields 

Differentially closed fields 
Divisible abelian groups with 

infinitely many elements 
of each finite order 

Divisible, torsion-free abelian 
groups 

Dense linear orderings with 
neither first nor last element 

Robinson demonstrated that model-completions lead to simple proofs of 

other important results. For example, one can deduce easily that the theory 

TAc~o of algebraically closed fields of characteristic 0 is a complete, decidable 

theory admitting elimination of quantifiers from the facts that TAcFo is the 

model-completion of the theory of fields of characteristic 0 and has a prime 

model, the algebraic closure of the rational numbers [49]. Model-completions 

lead also to easy proofs for Hilbert's Nullstellensatz [50], the existence of 

uniform bounds on the degree of the polynomials in Hilbert's Nullstellensatz 

[49], and Hilbert's seventeenth problem [49]. 
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Nevertheless, the notion of a model-completion is not as inclusive as one 

would like, as Robinson noted. Although the theory of ordered fields has a 

model-completion, the related theory of formally real fields does not. The reason 

is the existence of real closed fields F~ and F2 such that ~ is in F1 and 

V ~- %/2 is in F2. Consequently, F~ and F2 are not elementarily equivalent in the 

language of their common subfield Q(V~) [49]. 

This example motivated the Eli Bers group to introduce model-companions. 

A theory T* is the model-companion of a theory T if (0) T and T* have the 

same language, (1) T and T* are mutually model-consistent, and (2) T* is 

model-complete. If a theory has a model-companion, then that model- 

companion is unique up to logical equivalence. 

Clearly, a model-completion is also a model-companion, but the converse is 

false. The latter assertion is verified by the example of formally real fields. The 

theory of real closed fields is model-complete and is mutually model-consistent 

with the theory of formally real fields. Thus, the theory of real closed fields is a 

model-companion but not a model-completion for the theory of formally real 

fields. 
In fact, the theory of formally real fields is the paradigm of a theory with a 

model-companion but not a model-completion. There is no model-completion 

because there is no formally real field F3 such that 

F3 

F1 F2 

o(x/~) 

where F1 and F2 are the fields mentioned previously. In other words, F~ and F2 
can not be amalgamated over Q(V'2). A theory T is said to have the 

amalgamation property if whenever ~ ,  :~J~, and ~022 are models of T and ~/Y~I and 

~R2 extend ~!R, then there is a model ~3  of T extending both ~ and ~Rz. The 

following theorem of P. Eklof and G. Sabbagh [25] establishes the theory of 

formally real fields as the paradigm. 

THEOREM A. Assume that T* is a model-companion for T and that T* 

includes T. Then T* is a model-completion for T if and only if T has the 

amalgamation property. 

This result brought two, related questions to the forefront: (1) What theories 

ether than those in Table II, for example, groups or R-modules, have model- 
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companions? (2) How can one prove that a theory does not have a model- 

companion? Both questions are ultimately questions about existentially com- 

plete structures, as the following theorem shows. 

THEOREM B. A theory T has a model-companion T* if and only if the class 
~T of existentially complete structures for T is a generalized elementary class 
(ECa), in which case T * =  Th(~T). 

The first published proof that certain theories did not have model-companions 

appeared, to the best of my knowledge, in the paper "Model-completions and 

modules" by P. Eklof and G. Sabbagh [25]. They proved that the class ~T when 

T is either the theory of groups or the theory of modules over a noncoherent 

ring is not closed under ultrapowers and so cannot be a generalized elementary 

class. Specifically, they found general elementary properties which are elemen- 

tary for the existentially complete structures but not for the theories. The 

existence of such general elementary properties entails the absence of a 

model-companion, as will be shown in the next section. 

2. Definability and model-companions 

The problem of existence of a model-companion and the problem of definabil- 

ity of general elementary properties for existentially complete structures are, for 

many theories, essentially two sides of the same coin. This coincidence will be 

spelled out in three steps. First, attention will be restricted to universal theories 

and general elementary properties corresponding to quantifier-free types. Then 

the coincidence will be discussed for arbitrary theories and general elementary 

properties. Finally, these results will be used in the next section to prove a 

generalization of the theorem of P. Eklof and G. Sabbagh on model-completions 
for modules. 

Consider a language with variables vl, v2,. .- .  A (quantifier-free, universal, 

respectively) n-type A will be a set of (quantifier-free, universal, respectively) 

formulas in this language with free variables among v l , . . . ,  v,. The conjunction, 

possibly infinitary, of the formulas in A will be denoted by A A. 

DEFINITION ]. A formula ~0 ( v l , "  ", v,) will be said to generate an n-type A 

for a class 2~ of structures if each structure in ~ satisfies the sentence 

Vv~. �9 �9 Vv, (q~ --> A A). A formula will be said to generate an n-type for a theory T 

if it does so for the class Mod(T)  of models of T. 

DEFINITION 2. An n-type A will be said to be self-generated for a class ~ of 

structures if there is a finite conjunction of formulas from A which generates A 
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for ~. An n-type will be said to be self-generated for a theory if it is 

self-generated for the class of models of the theory. 

DEFINITION 3. A n  n- type  A will be said to be (existentially) principal for a 

class ~ of structures if there is a (existential) formula q~ (v~,. �9 v~) such that each 

structure in E satisfies the sentence Vv~ �9 �9 �9 Vv, (~ ~ AA). The formula ~ will be 

called a principal generator for A. An n-type A will be said to be (existentially) 

principal for a theory if it is (existentially) principal for the class of models of the 

theory. 

A general elementary property corresponds to a type. The property is 

elementary if and only if that type is principal. 

THEOREM 1. I f  a theory has a model-companion, then each quantifier-free 
type which is existentially principal for the theory's existentially complete structures 

is self-generated for the theory itself. 

PROOF. Assume that T is a theory with a model-companion T*. Suppose 

that A is a quantifier-free n-type which is existentially principal for the class ,~'r 

of existentially complete structures for T. Since ~r = Mod(T*), there is an 

existential formula ~ such that T* ~- Vv~ �9 �9 �9 Vv, (~ ~ AA). Consequently, there 

are formulas to~,..., to,, in A such that T*~-Vvl . . .Vvn ( tolA- ' '  A to,,---~,). 

Let too be the formula toIA""" A to,,. For each formula tO in A, T*FVv~. . .Vv~ 
(too---~ to). Since Vv~.-.Vvn (too----~ to) is a universal formula and T and T* have 

precisely the same universal consequences, T F V v l . . . V v ~  (too---~ to) for each 

formula to in A. Hence, A is self-generated for T. 

COROLLARY 1. I f  a theory has a model-companion, then each quantifier-free 
type which is principal for the theory's class of existentially complete structures is 

self-generated for the theory itself. 

PROOF. Assume that T* is the model-companion of a theory T. Since T* is 

model-complete, each formula is equivalent with respect to T* to an existential 

formula. Since ~r is just the class of models of T*, each principal type for ~r is 

in fact existentially principal for ~'r. 

COROLLARY 2. I f  there is a quantifier-free type which is not self-generated for 
a theory but is existentially principal for the theory's class of existentially complete 

structures, then the theory does not have a model-companion. 

The usefulness of Corollary 2 is illustrated in the following examples. 
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EXAMPLE 1. Let T be the theory of groups. Let A = {x" ~ e : n > 0}, where e 

is the constant symbol in T for the identity element of a group (to simplify 

formulas, the symbols x, y, and z will be used in place of v,, v2, and v3). This type 

is existentially principal for the class of existentially complete groups. 7A 

particular existential, principal generator for this type is the formula :ly : lz .  

(yx = x2y A ZX 2 = X2Z A ZXr XZ) [35, pp. 202--203, 222; or 72, pp. 20-21]. 

EXAMPLE 2. Let T be the theory of division rings of a specified characteristic 

p, a prime, or zero. Let A = {q(x)~ 0 :q (~)  is a monic, irreducible polynomial 

over the prime field of the specified characteristic}. An element realizes this type 

if and only if it is transcendental over the prime field. Clearly, this type is not 

self-generated for the theory T. However, it is existentially principal for the class 

of existentially complete division rings. A particular existential, principal 

generator for A is 3y  ::lz (yx = x2y A ZX 2 = X2Z A ZXg XZ) [35, pp. 202--203; or 

72]. 

EXAMPLE 3. Let T be the theory of commutative rings. Let A = {x" ~ 0 : n > 

0}. An element realizes A if and only if it is not nilpotent. This type is not 

self-generated for the theory T. Nevertheless, it is existentially principal for the 

class of existentially complete commutative rings. A particular existential, 

principal generator for A is :ly ::lz (y2= y Ay~OAxz = y)  [17]. 

Theorem 1 has the following, partial converse. 

THEOREM 2. Assume that a universal theory T with at least one constant 

symbol has the amalgamation property. I f  each quantifier-free type which is 

existentially principal for the theory's class of existentially complete structures is 

self-generated for T, then T has a model-completion. 

PROOF. It suffices to show that the theory Th(~r )  is model-complete, or, 

more specifically, that each existential formula is logically equivalent with 

respect to Th (~r) to a quantifier-free formula. 

Let q~(vl, ' . . ,  v.) be an existential formula: Let V(~0)= {qJ(v~,..., v.) : qJ is a 

universal formula and T F~0--~ ~b}. It is well known that the existentially 

complete structures for T satisfy the formula Vv~. �9 �9 Vv. (~0 ~ AV(q~)). Since T is 

universal and has the amalgamation property, for each ~b in V(~0) there is a 

quantifier-free formula p ( v ~ , . . . , v . )  such that T F V v ~ . . . V v ,  (~o---~p) and 

T F V v x " ' V v ,  (p - - -~)  (see reference [1]). Let V ( ~ ) = { p ( v , , . . . , v . ) : p  is a 

quantifier-free formula and T F ~o ~ p}. 

Each existentially complete structure for T is a model of T (since T is 
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universal), so it follows that each existentially complete structure for T satisfies 

the formula V v l . . . V v ,  (~--~AV(~)). In other words, V(~) is existentially 

principal for ~T. By hypothesis, V(~) is self-generated for T. Let po be a 

conjunction of formulas from V(~) such that TFpo--~p for each p in V(~). 

Again, since each existentially complete structure for T is a model of T, each 

existentially complete structure for T must satisfy the formula Vv~. . . 'dv ,  

(~ ~--~po). Hence, the theory Th(g'r) is model-complete and is the model- 

completion of T. 

COROLLARY 1. Under the assumptions of Theorem 2, the theory of ~T permits 

elimination of quanti]iers. 

PROOF. This is obvious from the proof of Theorem 2. Also, it follows from a 

theorem of A. Robinson [49, p. 236, theor. 9.2.19]. 

There are comparable results concerning universal types. However, these 

results must use the inductive-companion of the theory rather than the theory 

itself. 

DEFINITION 4. For any theory T, the inductive-companion T 2 of T is defined 

by T: = {~ : ~ is an V::I sentence and Tv t3 {~} is mutually model-consistent with 

Tv (or equivalently, with T)}, where Tv denotes the set of universal conse- 

quences of T [33; 35, p. 105]. 

The set T 2 is a consistent set of sentences. If T has a model-companion T*, 

then T* and T 2 are logically equivalent. More generally, T 2 is the V::I theory of 

the class g'r. 

THEOREM 3. Let T be an arbitrary (first-order) theory. If  each universal type 
which is existentially principal for the class of existentially complete structures for T 
is self-generated for T ~, then T 2 is a model-companion for T. 

Conversely, if T 2 is a model-companion for T, then each universal type which is 

principal for the class of existentially complete structures for T is self-generated for 
T 2" 

PROOF. First, assume that each universal type which is existentially principal 

for the class g'T is self-generated for T 2. Let ~ ( v l , "  ", v,) be an existential 

formula, and let V(~) = {if(v1,.. . ,  v,):  ~b is a universal formula and T ~.~ ~ ~b}. 

The set V(~) is an existentially principal type for g'r. Consequently, V(~) is 

self-generated for T 2. Let ~b0 be a finite conjunction of formulas from V(~) such 

that T2~-VVl �9 �9 �9 'dr, (~o---~ if) for each ~b in V(~). Since ~gT is included in the class 
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of models  of T ~, each existentially comple te  s t ructure  satisfies the  sen tence  

V v ~ . . . V v ,  (ff0---~ AV(~0)). Also,  each existentially comple te  s t ructure  satisfies 

the sen tence  V v ~ . . . V v ,  (~0~--~AV(~0)). Hence ,  each existentially comple te  

s t ructure  satisfies the sen tence  VVl �9 �9 �9 Vv,  (~0 ~ ~o). Since this sen tence  is V::I, it 

is in T 2. Thus,  each existential  fo rmula  is equiva len t  in T ~ to a universal  formula ,  

so T ~ is mode l - comple t e .  Since T and T 2 are mutual ly  model -cons is tent ,  T 2 is a 

m o d e l - c o m p a n i o n  for  T. 

The  converse  is immedia te .  

COROLLARY 1. If  there is a universal type which is principal for the class ~gr but 

is not self-generated for ~gT, then T does not have a model-companion. 

COROLLARY 2. (D. Saracino).  The theory of metabelian groups does not have 

a model-companion. 

PROOF. D. Saracino [63] p roved  that  the type {Vy Vz (x ~ ~ [y, z] )  : n > 0} is 

principal  for  the class ~ r  with gene ra to r  Vy Vz ::lu ::Iv ([y, z]  = [x, [u, v]]) and 

that  this type is not se l f -generated.  H e r e  [y, z]  deno tes  the c o m m u t a t o r  y-~z-~yz 

of y and z. 

3. Model-companions for universal theories with finite presentations 

The  class of universal  theor ies  with finite p resen ta t ions  and  the  a m a l g a m a t i o n  

p rope r ty  includes m a n y  of the  c o m m o n  theor ies  of a lgebra,  for  example ,  groups,  

abel ian groups,  tors ion-f ree  abel ian groups,  R - m o d u l e s ,  and Boo lean  algebras.  

The  theor ies  in this class which have  m o d e l - c o m p a n i o n s  are charac te r ized  in 

T h e o r e m  5 in this section.  

T h r o u g h o u t  this section T will deno te  a universal  theory.  

A mode l  ~ of T gene ra t ed  by e lements  a l , " . ,  am is said to be  finitely 

presented if there  is a finite set P = {p~(vl, . . . ,  v , ) , .  �9 p~ (v~, . . . ,  vn)} of a tomic  

formulas  such that  ~ satisfies p~ (a l , .  �9 a , )  for  i = 1,. �9 k, and,  for  each a tomic  

fo rmula  p(vl, " " ", vn), ~ satisfies p ( a ,  . . ., an) if and only if 

T I- V Vl" �9 �9 V v, [(Pl A- �9 �9 A pk) ~ p].  The  set P is called a presentation for  ~/R. 

A mode l  ~ of  T gene ra t ed  by e lements  a , .  �9 aN has a finite p resen ta t ion  

P = {pl," �9 ", pk} if and only if, wheneve r  a mode l  ~R' of T gene ra t ed  by e lements  

a ; , . . . ,  a'. satisfies p , ( a ~ , - . - ,  a ' )  for  i = 1 , - . - ,  k, then  there  is a h o m o m o r p h i s m  

f rom ~92 on to  9 '  de t e rmined  by sending a~ to a'~ for  i = 1 , . . . ,  n. 

The  theory  T will be  said to have  finite presentations if, for  each finite set 

P = {pl(v~, �9 �9 ", v,) ,  �9 �9 pk (vl, �9 �9 v,)} (k and n arb i t rary)  of a tomic  fo rmulas  for  
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which the sen tence  3 v 1 " . . : : I v ,  ( R 1 A ' ' "  ARk ) is consis tent  with T, there  is a 

finitely p resen ted  mode l  of  T with presenta t ion  P. 

In the r ema inde r  of this section, the sequences  vl, �9 �9 ", v,, al,  �9 �9 a,, etc., may  

be deno ted  by v, a, etc., respectively.  The  sequences  v , , - . . ,  v,, v , + l , "  ", v,,, 

a l , . . . ,  a,, a , + , . - . ,  a,,, etc., may  be deno ted  by ~5, 4, etc., respect ively.  The  

posit ive d iagram of a s t ructure  ~ ,  deno ted  by Diag+0Y0, is the set of  a tomic  

sentences  which are defined and t rue  in ~R. 

THEOREM 4. A s s u m e  that P = { p l ( v , , ' " ,  v , ) , . . . , p ~ ( v ~ , . . - , v , ) }  is a set off 

atomic[formulas[for which the sentence 3v~ . . . 3 v ,  (p~ ^ . . .  A pk ) is consistent with 

T. There is a finitely presented model  o f  T with presentation P if  and  only i[f, 

whenever  tr~(v,, . . ., v,) ,  . . ., % (v~, . . ., v , )  are atomic [formulas and 

T F V v ~ " "  VO. [(p, A " " "  A pk)- '~ (O'] V " " "  V orp)], 

then T F V v ~ .  - .Vv,  [(p, A" �9 �9 A pk)--o O5) [for some i between I a n d  p inclusive. 

PROOF. Let p (v , , - . - ,  v,) be the conjunction of the formulas in P. 

First, assume that T has a model ~ generated by elements a l , . . . ,  a ,  with 

presentation P. Suppose that o-~(~3), �9 �9 ~r~ (5) were atomic formulas for which 

( , )  T ~  W [p ~ (o-, v - - .  v o-.)] 

but TJzVO [p --* cr~] for i = I , -  �9 ",p. Then there would be for each i = I , -  �9 . ,p a 

model ~)~ of T generated by elements a,., ,- '- ,  a~., such that ~ satisfied 

P (ai. , , . . . ,  ai,,) and -~ ~r~ (a~.,,..., a~.,). Since ~!~ has presentation P, there would 

be a homomorphism of ~0~ onto ~I~ sending aj to a~.j for j = I , .  �9 n, i = I , -  �9 p. 

Then ~O~ would have to satisfy -~ ~r~(a~,-.., a,)  for i =  I , . . . , p ,  since positive 

formulas  are p rese rved  under  h o m o m o r p h i s m .  But  then ~ would satisfy 

o'l(a~, �9 �9 a . )  ^ . - .  ^ ~ t r , ( a , , . . . ,  a . )  contradict ing (*). Hence ,  there  is no 

such collection of a tomic  formulas  o-~, . . . ,  o-p. 

Converse ly ,  assume that  wheneve r  T F V O [ p - - - ~ ( o ' ~ v . . . v t r , ) ]  for  a tomic  

formulas  tr~(vl, �9 �9 v , ) , .  �9 trp (v~,. �9 v,) ,  then Tt-V~5 [p --9 tr~] for  some  i be- 

tween 1 and p inclusive. A u g m e n t  the language of T by adjoining new constants  

a,,  �9 �9 a,. Let  A be the set of a tomic  sentences  in the a u g m e n t e d  language.  Let  

D + = { O : O  is in A and TI-p(gt)---~O}, and let D - = { ~ O : O  is in A and 

TJX p(K)---* 0}. 

T h e  set T tO D+t_J D -  is consistent .  T o  verify this, suppose  that  it is not 

consistent .  Then  there  are sentences  01 , . - - , 0 ,  in D § and sentences  

~ 0 , + ~ , . . . , ~ 0 ,  in D -  such that  T t - ~ ( O , ^ . . . ^ O , ^ ~  0 , + ~ ^ . . . ^ ~  0~). Then  

T l - ( O x A . . . A O , ) - - ~ ( O , + ~ v . . . v O ~ ) .  Since 0 , . . . ,  0, are  in D § , 
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T F p ( F t ) - o ( O , + i v . . . v  0,). By assumption, TFp(FI)---* O~ for some i between 

r + l  and s inclusive. But this contradicts that --10, is in D - .  Hence, 

T U D § U D -  is consistent. Let 92 be a model of T U D + U D - .  Let ~ be the 

substructure of 92 generated by a~, �9 �9 an. Since T is universak ~ is a model of 

T. Moreover,  Diag ( ~ )  = D + U D - .  Hence, ~ has presentation P. 

COROLLARY 1. Every  un iver sa l -Horn  theory has  finite presentations.  

PROOF. Suppose that P = {p~(v~ , . . . ,  v , ) , . . . ,  p k ( v l , "  ", v,)} is a set of atomic 

formulas for which =Iv1. �9 �9 ::lvn (pl A �9 �9 �9 A pk ) is consistent with a universal-Horn 

theory T. Suppose that O'l(V~, �9 �9 v , ) , .  �9 o-p(v~,. �9 Vn) are atomic formulas for 

which 

TFV5 [(p~ A ' ' "  A pk)"~  (O-1 V ' ' "  V o-p)] 

but 

T J V # [ ( p l A ' ' ' A p ~ ) - ~ o ' ~ ]  for i = l , ' - ' , p .  

Let ~e  for i = 1 , . . . ,  p be the models described in the preceding proof for this 

situation. Let ~1~ be the submodel of I/f=1~/R~ generated by the elements 

al = (aLl, a2.~, " ., ap.O, " " an = (al.n, a2,., " " ", av.,). Then ~ is a model of T and 

~/~ satisfies 

p 1 ( a l , . . . , a , ) A .  . .  Apk ( a l , ' '  " ,an)A ~ o ' l ( a l , ' .  " , a n ) A ' ' '  A"-I O-v (a~, ' .  . , a , )  

contradicting the choice of o-1,'" ", o-p. 

DEFINITION 5. A theory with finite presentations will be said to be coherent  if 

each finitely generated submodel of a finitely presented model is finitely 

presented itself. 

A theory is said to have the congruence  ex tens ion property if whenever ~ ,  92, 

and 92' are models of the theory and g : 92---* ~ is an injective homomorphism 

and h :92---* 92' is a surjective homomorphism, then there is a model ~R' of the 

theory, an injective homomorphism g :92'---*~', and a surjective homomor- 

phism ff : ~---* ~ '  such that g o h =/~ o g. 

A theory is said to have the h o m o m o r p h i s m  lifting property (also known in the 

literature as the injections transferable property)  if whenever ~ ,  92, and 92' are 

models of the theory, g : 92 ~ ~ is an injective homomorphism, and h : 92 ~ 92' 

is a homomorphism, then there is a model ~ '  of the theory, an injective 

homomorphism g : ~'---* ~9"d', and a homomorphism/~ : ~92---* ~ '  such that g o h = 
]~og. 
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If a universal theory has the amalgamation property and the congruence 

extension property, then it has the homomorphism lifting property. If a universal 

theory has the homomorphism lifting property, then it has the congruence 

extension property. 

PROPOSITION 1. I f  a universal theory with finite presentations has the 
homomorphism lifting property, then it has the amalgamation property. 

PROOF. Assume that T is a universal theory with finite presentations and the 

homomorphism lifting property. Suppose that ~0"~, ~ ' ,  and ~ "  are models of T 

and that ~ '  and ~02" extend ~I)2. It suffices to show that T LI Diag (~IR') LI Diag (~IR") 

is consistent, where the same constant symbols are used in both Diag(~[R') and 

Diag (~" )  to denote elements of ~92 and D iag (~ ' )  and Diag (~02") have no other 

constant symbols in common. Since T has the homomorphism lifting property,  

T U Diag ( ~ ' )  t_l Diag + (~IR") and T t.J Diag+(~92 ') U Diag (~02") are consistent. Sup- 

pose that T U Diag (~[R')LI Diag (~" )  is inconsistent. Then there are sentences 

p l , ' "  ",Pq, --')pq+l,' ' ' ,  "==)pr in D iag (~ ' )  and sentences O - l , "  ~ " , 0 " $ ,  -==lOs+l,  " ~  , 

-n o-, in Diag (~IR"), where the p, and o-~ are atomic, such that 

T F  ~ l [ p l  A �9 �9 - A pq A ' - - I  Pq+l  A " " - A ' - - I  p ,  A o-z A - ~  " A O - s  A ' - - I  o-s+l A " -  �9 A ' - - I  O ' f ] .  

Then 

TF[(pl  A'-"  A pq A O'IA' '"  A Or,)'--~(pq+l V ' ' "  V p, V O',§ V Or,)]. 

Since T has finite presentations, T LI (px, ' '  ", pq, o-~,"" ", ors} must imply one of 

pq.~, �9 �9 ", p~ o-s.x, " ' ", or*. But none of pq.~, �9 �9 p, can be implied thusly, because 

T U Diag ( ~ ' )  U Diag*(~  ") is consistent. Likewise, none of o-s+~, �9 �9 ", o-, can be 

implied thusly, because T U Diag§ ') LI Diag (~ff~") is consistent. Hence, T 13 

Diag (~92') t3 Diag (~R") is consistent. 

DEFINmON 6. A theory T will be said to have the conservative homomor- 

phism lifting property (conservative congruence extension property) if whenever 92 

and ~[R are models of T, ~R extends 92, $(vl,  �9 �9 ", v,, V.§ �9 �9 ", vm ) is a conjunction 

of negated atomic formulas, and ~/R satisfies d/ (a~ , . . . ,a , ,a , .~ , . . . ,a=)  for 

elements a ~ , . . . , a ,  of 92 and elements a n . a , ' " , a ,  in ~2 but not 92, then 

there is a quantifier-free formula X ( v ~ , " ' , v , )  such that T U  

Diag§247 and if h:92---~92' is a 

homomorphism (surjective homomorphism, resp.) and 92' satisfies 

x ( h ( a O , . . . , h ( a . ) ) ,  then there is a model ~ '  of T which extends 92' and a 

homomorphism (surjective homomorphism, resp.) /~ :~t t~ i l~ '  such that the 
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restriction of /~ to 92 coincides with h and ~/R' satisfies $ (h (a~ ) , - . - , h ( a , ) ,  
/~(a,+,), �9 �9 ",/~(a., )). 

DEVlNmON 7. A theory T will be said to have the conservative homomor- 

phism lifting property for finite presentations (conservative congruence extension 

property for finite presentations, respectively) if the preceding definition holds 

with the additional restrictions that ~IR is generated by a , , . - . ,  a,, a , + l , "  ", a., 

with some finite presentation P and 92 is generated by a , , - . . ,  a,. 

A theory with the amalgamation property or the homomorphism lifting 

property has the conservative homomorphism lifting property (for finite presen- 

tations) if and only if it has the conservative congruence extension property (for 

finite presentations, respectively). 

A theory with finite presentations has the conservative homomorphism lifting 

property (for finite presentations) if and only if it has the amalgamation property 

and the conservative congruence extension property (for finite presentations, 

respectively). 

The main theorem of this paper is the following. 

THEOREM 5. Assume that T is a universal theory with finite presentations, at 
least one constant symbol, and the amalgamation property. The theory T has a 

model-completion, or equivalently a model-companion, if and only if T is coherent 
and has the conservative congruence extension property for finite presentations. 

PROOF. (i) Assume that T has a model-completion T*. Let 92 be a finitely 

generated submodel of a finitely presented model ~ of T. Assume that 92 is 

generated by elements a , , . . . ,  a. and that ~IR is generated by the elements 

a l , . . . ,  a, together with elements a , + , - . . ,  a,, (not in 92) with presentation 

P={p , (v : , . . . , v . , v .+l , . . ' , v , . ) , " - ,pk (v , , . . . , v , , v .+l , . . . , v , , ) } .  Let p be the 

conjunction plA'--Ap~. Let ~ (v , , . - - ,  v,) be the formula 3v.§ "30,.0. 

Since T* is the model-completion of T, T* permits elimination of quantifiers 

(theor. 1 and corol. 1 to theor. 2, or theor. 9.2.19 of reference 49, p. 236). Let 

O(v~,.. . ,v,) be a quantifier-free formula such that T*F-Vv~...Vv. (~o ~--~0). 

One may assume without loss of generality that 0 is a disjunction 01 v.  �9 �9 v 0~ 

where each 01 is a conjunction of atomic formulas and negated atomic formulas. 

Since ~ is included in a model of T*, 92 must satisfy 0,(ti) for some i. Let 

try,-. . ,  cr, be the positive conjuncts of 0i for this i. Let 92' be the model of T 

generated by elements a [ , - . . , a ' ,  with presentation {o ' l , ' " , t r .} .  There is a 

homomorphism of 92' onto ~ sending a;  to a t. Therefore, 92' satisfies 

0, (a't. .  �9 ", a ' )  for the i specified above. Since 92' is included in a model of T*, 
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there is a model ~l)t' of T which extends 92', is generated by the elements 

a~ , - ' . ,  a"  together with elements a .+ , , . - . ,  a ' ,  and satisfies 0(6') .  There is a 

homomorphism of ~ onto ~ '  sending aj to a), since P is a presentation of ~0"t. 

Thus, 92 and 92' are isomorphic. Hence, {o'1, �9 �9 o-,} is a finite presentation for 92. 

Now suppose that qJ(vl , . . . ,  v., v .+, , . . . ,  v,.) is a conjunction of negated atomic 

formulas and that ~ satisfies qJ(6). Let X(V~," �9 ", v,) be a quantifier-free formula 

for which 

7"* ~ v o , . . . v v .  [ ( 3 0 , ~ . . . 3 v ,  (p(~) ^ ~0(~))),-,x(~)]. 

Since T and T* have the same universal consequences, T I J  

Diag+(~) I- g, (4)---> X (d). Suppose that 92" is a model of T generated by elements 

a t ' , "  ", a"  and that there is a homomorphism of 92 onto 92" sending a; to a'[. 

Suppose further that 92" satisfies X(d"). The structure 92" has an extension ~R" 

which is a model of T*. There are elements a"+1, �9 �9 -, a "  of ~'t" for which ~IR" 

satisfies p(6")^qJ([t"). Let ~ "  be the submodel of T generated by 

aT," �9 ", a", a"+l, �9 �9 a" .  There is a homomorphism of ~ onto ~IR" sending a; to 

a';, because P is a presentation of ~0t. 

Thus, T is coherent and has the conservative congruence extension property 

for finite presentations. 

(ii) Assume that T is coherent and has the conservative congruence extension 

property for finite presentations. A model-completion for T will be constructed. 

Suppose that r  is a primitive existential formula such that 

:Ivy. . . : :Iv.  ~o is consistent with T. Then q~ has the form 

3 v . + ~ .  . . 3 v , ,  [ p ~ ( v ~ , .  . ., v , ,  v . + l , .  . ., v , , , ) ^ .  . . ^ 

(1) p k ( v , . . . , v , , v . §  o ' , ( v , , . . . , v . , v , ~ , , . . . , v , . ) ^ . . . ^  

-"'10rp ( l ) l ,  "" ", On, l )n+ l , " "  ", Vrn)] 

where the p, and tr; are atomic. The theory T has a model ~ generated by 

elements a l , - - ' ,  a,, a,+~,-.-,  a,, with presentation {p~,-.-, Ok}. The model ~2 

must satisfy ~ o ' ~ ( 6 ) ^ . . . ^ ~  trp(6). Let 92 be the submodel generated by 

a~ , "  ", a.. Since T is coherent,  92 is finitely presented. Let O(v~,.. . ,  v,) be a 

conjunction of a finite presentation for 92. Let tO(v~," �9 -, v,, v,+x,. �9 v,,) be the 

formula --1 cr1(15) ̂ . . .  ^ -1 o'p (t3), and let X(v~,'" ", v,) be the formula described 

in the definition of the conservative congruence extension property for this 

choice of ~ ,  92, and qJ. Let A (~0) be the formula 

Vv,.- .Vv, [~(v, , . . . ,  v , ) , - - , ( O ( v , , .  . . ,  v , )  ^ x ( v , , "  ", v,))]. 

Let T* = T tO {A (r  : ~0 (v~, �9 �9 v,) is a primitive existential formula for which 
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3v, . . . : : ]vn~ is consistent with T}. In order to verify that T* is the model- 

completion of T, it will suffice according to Theorem A to show that each model 

of T is included in a model of T* and that T* is model-complete. 

Let ~R1 be an existentially complete structure for T. Let q~(v~,-.-, vn) be a 

primitive existential formula for which ::1 vl" �9 �9 :1 v, q~ is consistent with T. Assume 

that ~, has the form in (1). Suppose that ~1 satisfies r  a ' )  for soine 

elements a ~,. �9 a'n. Let a'+~,. �9 a "  be elements of ~1  for which ~/R, satisfies 

p~(6') A--- A pk (6')  A "-n ~r~(d') ^ " -  ^ -1 o'p (d'). Let ~IR' be the submodel gener- 

ated by a ~ , - . . , a ' ,  a ' ~§  and let 92' be the submodeI generated by 

a'L,. �9 ", a ',. The model ~ '  is a homomorphic image of ~ .  The same homomor- 

phism maps 92 onto 92'. Since 0 is the conjunction of a presentation of 92, the 

model 92' satisfies 0 (a~ , . . - , a~) .  The formula X was chosen so that T U  

Diag+(~J~)Fr247 Since ~R' is a model 

of Diag§ ~/R' satisfies X (a '~,..., a "). Thus, ~IR' satisfies 

O (a ~, . . . ,  a ' )  A X (a ~, . . . ,  a ' ) ,  so ~IR~ satisfies this (quantifier-free) sentence also. 

Suppose now that ~RI satisfies O(a~,..., a") ^ x(a';,'" ", a") for some elements 

a~',. �9 a~. Let 92" be the submodel generated by at'," �9 ", a". Since ~2" satisfies 

O r-'~u~, . " ,  a",), there is a homomorphism of 92 onto 92" sending al to a~. Since 92" 

satisfies X (a'[,. �9 a'.'), there is a model ~ "  of T which extends 92", is generated 

by the elements a '~,-. . ,  a'.' together with elements a"+~,--., a" ,  and satisfies 

qJ(~"), and there is a homomorphism from ~l~ onto ~ "  sending a~ to a'~. 

Therefore,  ~ "  satisfies p~(6") A" "- ^ pk (6") ^ --1 ~,(6") ^ ' ' '  ^ --1 orp (d"). There is 

a model ~)22 of T which extends both ~9"d~ and ~ " ,  since T has the amalgamation 

property. The model ~0~z satisfies ~p(a';,..-, a"). Since ~0"~1 is existentially com- 

plete, it satisfies ~o ( a t ' , ' '  ", a") also. Thus, ~ ,  is a model of A (~,). 

Thus, each existentially complete structure for T is a model of T*. Since each 

model of T is included in an existentially complete structure, T* is mutually 

model-consistent with T. 

If q~ (v~,. �9 v,) is an existential sentence such that ::lva �9 �9 �9 :Iv. ~0 is inconsistent 

with T, then T implies Vva. �9 -Vv, [~0 ~-~ -n(c = c)], where c is a constant symbol 

occurring in T. Thus, each existential formula is equivalent in T* to a 

quantifier-free formula. Hence, T* is model-complete. 

COROLLARY 1. Assume that T is a universal theory with finite presentations, at 

least one constant symbol, and the amalgamation property. If  the language of T 

contains at most finitely many predicate symbols (but may have arbitrarily many 

constant symbols and function symbols) and every finitely generated model of T is 

finite, then T has a model-completion. 
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PROOF. Since every finitely generated model is finite, T is coherent. 

Moreover, T has the conservative congruence extension property for finite 

presentations, because each finitely generated structure has only a finite number 

of homomorphic images. 

COROLLARY 2. The theory of Boolean algebras has a model-completion. 

PROOF. The theory of Boolean algebras satisfies the hypotheses of Corol- 

lary 1. 

COROLLARY 3 (G. Sabbagh [61], R. Cusin and J. R. Pabion [22], and D. 

Saracino). The theory of p-rings for each prime p has a model-completion. 

PROOF. G. Sabbagh [61] proved that the theory of p-rings for a prime p has 

the amalgamation property. Consequently, this theory satisfies the hypotheses of 

Corollary 1. 

COROLLARY 4 (P. Eklof and G. Sabbagh [25]). The theory of groups does not 
have a model-companion. 

PROOF. The theory of groups satisfies the hypotheses of Theorem 5. It is well 

known from Higman's Theorem that there is a finitely presented group with a 

finitely generated subgroup which is recursively presented but not finitely 

presented. Consequently, this theory is not coherent and so does not have a 

model-companion. 

The proof of the preceding corollary is interesting, because all previous proofs 

of the corollary showed essentially that the theory of groups did not have the 

conservative congruence extension property for finite presentations. 
The verification of the conservative congruence extension property for finite 

presentations is tedious for most interesting theories with this property. Exam- 

ples are the theory of abelian groups and the theory of R-modules. This has led 

to the introduction of the model-cancellation property defined below. The 

verification of this property is usually straightforward. 

DEFINITION 8. A theory T will be said to have the model-cancellation 
property if whenever 92 and ~R are models of T, ~ extends 92, p is a conjunction 

of atomic sentences defined in 92 such that T U Diag§ U {p} is consistent, ~r is 

an atomic sentence defined in ~R but not true in ~0~, and T U Diag§ k p --~ tr, 

then there is a positive, quantifier-free sentence X defined in 92 such that 

T U Diag+(~R) k X ~ tr. 
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Of  course,  a model-cancel la t ion proper ty  for finite presenta t ions  could be 

defined in a manner  analogous  to that for the conservat ive congruence  extension 

proper ty  for finite presentat ions.  

THEOREM 6. A s s u m e  that T is a universal theory with finite presentations, at 

least one constant symbol, and the congruence extension property. I f  T has the 

model-cancel lat ion property, then T has the conservative congruence extension 

property. 

PROOF. Assume  that T has the model-cancel la t ion proper ty .  Let  

~ ( v , - . . ,  v,, v~+,,- . . ,  v~) be a conjunct ion  

- - ' ] O ' , ( V , , " "  ", Vn, V . + I ,  " "  ", V m ) A  ~ " " A- - ' l  O'o ( V , , '  �9 ", Vn, V n . l ,  . "  " , V m )  

of nega ted  a tomic formulas  -1 cry, - �9 --1 or,. Suppose that ~ and 92 are models  of 

T, ~ extends 92, a , , "  �9 ", aN are e lements  of 92, an+,," �9 ", a~ are e lements  of  ~R but  

not 92, and ~ satisfies ~ ( a , . . . ,  a,, a~+, , . . . ,  a,,). 

Consider  the formula  or,. Choose  a formula  )r as follows. 

Case 1. There  is a conjuct ion p of  a tomic sentences defined in 92 such 

tha tTUDiag+(~lR)U{p}  is consistent  and implies tr,(6). Since T has the 

model-cancel la t ion proper ty ,  there is a positive, quantif ier-free formula  

X,(v, ,  " " ", vn) such that 

T U Diag*(~)~) I- x l ( a l ,  " " ", a.  ) ~ trl(a,, �9 �9 an, an+l, �9 �9 ", am ). 

Case 2. There  is no such formula  p. Choose  XI to be the formula  ~ ( c  = c)  

where c is a constant  symbol  occurr ing in T. 

Choose  formulas  X.2(v, ,"  . , vn ) , - .  " ,X , (v l , ' "  . ,vn) in a similar manner .  Let  

X ( v l , ' "  ", v . )  be the formula  --aX, ^ - - .  ^--a X~. Clearly, by the choice of the X,, 

T U D i a g + ( ~ )  I- ~b(a, �9 �9 am, a~+b'" ", a,~ )---* x(a, , ' ' . ,  an). 
Suppose  now that  h :92 ~ 92' is a h o m o m o r p h i s m  of 92 on to  92' and that  92' 

satisfies )r (h (a,), �9 �9 h (a.)) .  In terpre t  the constants  in the language of  ~ which 

name elements  of 92 to name  the cor responding  images of these e lements  under  

h also. Since T has the congruence  extension proper ty ,  T U D i a g + ( ~ ) U  

Diag(92') is consistent.  Suppose  that this set of sentences implies -1 r Then  

there  are a tomic sentences 01, - . - ,  Ok in Diag+(~) ,  and a tomic  sentences 

p~, �9 �9 p, and negated  a tomic sentences -7 p,+~, �9 �9 -1 p~ in Diag (92') such that 

T F [ (01 A ' ' "  A Ok A ,01 A ' ' "  A ,0,- A -3  ,0,+1 A ' ' "  A ""1 ,0s ) ' - ~  ( o ' , ( d )  v " "  v o'p ( d ) ) ] .  

Then 

T t-[(01 ^ - - .  ^ O~ ^ ,0, ^ . . -  ^ ,0,)-- ,  (,0,+, v . . - v  p~ v , r l ( a )  v - - .  v o-, ( a ) ) l .  
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Accord ing  to T h e o r e m  4, T U {01,- �9 0k, pl," �9 ", p,} implies one  of 0,§ " ", ps, 

t r l ( t i ) , . . . , ~ p ( 6 ) .  But  none  of p , + l , ' " , p s  could be  implied,  since T U  

D i a g + ( ~ )  U Diag(92') is consistent .  There fo re ,  tr~ (ti) for  some  i be tween  1 and p 

inclusive is implied.  Consequent ly ,  T U Diag+(~l~) k (pl ^" �9 �9 ̂ p,)--~ o-~ (ti). 

The re fo re ,  Case 1 above  was used to choose  the cor responding  X~, so T U 

Diag§  Since --aX~(ti ) is in 

Diag(92'),  T U D i a g §  But then T U D i a g §  

Diag (92') implies both  tr~(ti) and --1 tr,(ti), which contradic ts  the consis tency of 

this set of sentences.  

Hence ,  T U D i a g §  U Diag(92') U {~(al ,  �9 �9 ", a,, a,§ �9 �9 ", am)} is consistent .  

There fo re ,  there  is a mode l  ~R' of  T which extends  92' and a h o m o m o r p h i s m / ~  of 

~[R on to  ~ '  such that  the restriction of /~ to 92 is just h and ~[R' satisfies 

~b(h(aO,"  ", h (a , ) , /~(a ,+0,"  " ",/~(am)). 

COROLLARY 1 (P. Ek lof  and G.  Sabbagh  [25]). The theory of  R - m o d u l e s  has 

a model-complet ion if and only i f  R is coherent. 

PaOOF. The  theory  of R - m o d u l e s  has finite presenta t ions ,  at least one  

cons tant  symbol ,  the ama lgama t ion  proper ty ,  and the congruence  extension 

p roper ty ,  and there fore  the h o m o m o r p h i s m  lifting p roper ty ;  all this is well 

known.  Moreove r ,  the theory  of R - m o d u l e s  has the model -cancel la t ion  prop-  

erty. To  verify this, suppose  that  92 is a submodu le  of  an R - m o d u l e  ~2,/31," " ", p,~ 

are a tomic  sentences  def ined in 92, tr is an a tomic  sen tence  def ined in ~R but  not  

t rue in ~[R, and T U Diag+(~R) k (Pl ^ �9 �9 �9 ̂ Pq)--> tr. Each  p~ has the fo rm Zr~ja~j = 

Zs, k b~k where  the rj s and s~ are e l ements  of  R and the a 0 and b~k are e l emen t s  of  

~ .  Let  ~ be  the submodu le  genera ted  by the e lements  Zr~ja~j-Zs~kb~k for  

i = 1, �9 �9 -, q. Since the a~j and b,k are e l ements  of  92, fft is a submodu le  of  92. T h e  

sentence  tr has the fo rm Zrjas = Zs~b~ where  the r~ and s~ are e l ements  of  R and 

the a~ and b~ are e l ements  of  ~)2. Since T U Diag+(~92) k (pl ^" �9 �9 ̂ p~)--* tr, there  

is an e l emen t  c of fit such that  ~[R satisfies Zrsa i = Z s k b ~ + c .  Then  

T U Diag§ (Zrlas = Zs~b~)<-->(c = 0). 
O n e  of the equivalent  condi t ions defining a coheren t  ring [11, pp. 62-63, 

p rob l ems  11-12] is that  each finitely gene ra t ed  submodu le  of a finitely p resen ted  

module  is finitely p resen ted  itself. Hence ,  the corol lary follows f rom T h e o r e m s  5 

and 6. 

4. Further applications of definable, general elementary properties 

W h e n  a theory  does  not have  a mode l - compan ion ,  a series of  ques t ions  arises 

concerning the class of  existentially comple te  s t ructures  and its var ious  subclass- 
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es. Definability of general elementary properties is usually relevant to the 

resolution of these questions. One question is whether every existentially 

complete structure is both finitely generic and infinitely generic; a weaker 

question is whether the finite forcing companion coincides with the infinite 

forcing companion (see [35] or [53] for definitions). The following theorems 

indicate the relevance of definability for these questions. 

THEOREM 7. Assume that T is a countable, first order theory. I f  A is a 

universal type which is not existentially generated, then there is an existentially 

complete structure, in fact, a finitely generic structure which omits this type. 

PROOF. Augment the language of T with an infinite set A = {a,~ : m < to} of 

new constant symbols. Assume that A is an n-type. Let {~',, : m < to} be an 

enumeration of all n-tuples of constants in the augmented language. Let 

{~m : m < to} be an enumeration of all the sentences in the augmented language. 

Construct a complete sequence of forcing conditions as follows. 

Step O. Let P0={a0=a0} .  

Step 2m + 1. If P2m finitely forces ~ .  or -7~m, then let P2,,+1 = P2,,. 

Otherwise, there is a condition Q containing P2m which does finitely force ~,~ ; 

let P2,,+l = Q. 

Step 2m + 2. Let =1~7(  ̂P2,,.~) be the formula obtained by replacing distinct 

constants occurring in P2,~+, but not in ~',, by distinct variables, forming the 

conjunction of the resulting formulas, and then existentially quantifying over the 

variables introduced. Since A is not existentially principal, there is a formula 

tP (v l , . . - , v , )  in A such that T j 3 ~ ( ^ P 2 m + l ) - ~ b ( c l , . . . , c , )  where ~',,= 

(c~,. .- ,  c,). We may assume that --1 ~b(ch' '  ", c~) is a disjunction of primitive 

sentences, namely X ~ ( c t , . . . , c , ) v . . . v x p ( c l , . . . , c , ) .  Then X , ( c ~ , " ' , c , )  for 

some i is consistent with T U P2,.+~. Substitute distinct constants from A which 

do not occur in P2m+~ or X~ (c,, �9 �9 c~) for the variables occurring in the matrix of 

X, (cz,- �9 c,). Let P2,,§ consist of the conjuncts of the resulting matrix together 

with the formulas in P2,,+t. Then P2,,+2 is consistent with T, so P2,,+2 is a 

condition containing P2,~+,. 

The sequence of conditions P0 C_ P~ C_... is a complete sequence of forcing 

conditions. Hence, it determines a unique, finitely generic structure. That this 

structure omits the type A is evident from the even numbered steps. 

THEOREM 8. Assume that T is a countable theory with the joint embedding 

property. I f  there is a universal type which is principal but not existentially principal 

for the class of existentially complete structures for T and is realized in one of these 
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structures, then the finite forcing companion T I and the infinite forcing companion 
T F are distinct, complete theories. 

PROOF. Since T has the joint  embedding  proper ty ,  both T r and T F are 

comple te  theories.  Let  ~(tT) be a genera to r  for  the type men t ioned  in the 

hypotheses .  This type must  be realized in some infinitely generic structure,  so T r 

includes the sentence :1t3~(2, ). On  the o ther  hand, this type cannot  be existen- 

tially genera ted  for T, so there is a finitely generic structure which omits this 

type. Hence ,  T I contains the sentence V~ ~ ~(T3). 

Types  which satisfy the hypotheses  of the preceding theorem have been found  

for  the theories  of groups  [35, 72], metabel ian groups  [63], ni lpotent  groups  (D. 

Saracino),  commuta t ive  rings [17], division rings [35, 72], and ari thmetic [34, 35]. 

D iag ram I presents  some of the quest ions which arise for a theory  without  a 

mode l -companion .  The  diagram also indicates which quest ions are subordina te  

to others.  W h e n e v e r  a quest ion has a negative answer, the quest ions benea th  it 

remain to be answered.  

DIAGRAM I 

QUESTIONS CONCERNING EXISTENTIALLY COMPLETE STRUCTURES 

Is there a model-completion? 

I 
I 

Is the amalgamation property satisfied? 

I 
Is 9:r = ST = ~3r ? 

1 I I 

I 
Is there a model-companion? 

1 

I I 
Is T 1 = T~? How many elementary equivalence 

classes of existentially 
complete structures are there? 

I 
t I 

Are there arbitrarily What is the minimal 
large, finitely generic quantifier complexity 

structures? of a sentence which 
distinghishes between 

T I and Tr? 

What is the status Is qJr 
of the approximating axiomatized 

chains for q3r ? by a sentence 

t of L,~.~ ? 

f l - -  
What are the What is the minimal 

degrees of degree of unsolvability 
unsolvability of the diagram of an 

of T t, T ~ existentially complete 
and Th(~r)? structure? 

The  definability of general  e lementary  propert ies  and, in some cases, the 

resulting interpretat ion of  second order  ar i thmetic have led to answers to most  



Vol. 25, 1 9 7 6  MODEL-COMPANIONS AND DEFINABILITY 325 

of these questions for some theories. Consider, for example, the question of the 

number of elementary equivalence classes of existentially complete structures. 

The following theorem [35, p. 130; 72, p. 53] relates this problem to degrees of 

unsolvability. 

The set of G6del numbers of a countable set S of formulas will be denoted by 

[Sl. 

THEOREM C. Assume that [T] is an arithmetical set. I f  the set {[T'] : T' = 

T h ( ~ )  for some ~ in ~T} has cardinality less than 2 N~ then the set is countable, 

each member of the set is hyperarithmetical, and Th(~r)  is hyperarithmetical. 

The set [T v] for the theories of arithmetic [34, 35], groups [35, 72], and 

division rings [35, 72] has been shown to have the same degree of unsolvability as 

the theory of full second order arithmetic. Hence the set of theories of 

existentially complete structures for these theories has cardinality 2 N~ Also, 

Th(~r)  for these theories is a complete l-Ill set .  

In passing, it should be remarked that the cardinality of the set of theories of 

existentially complete structures is either countable or the continuum regardless 

of whether IT] is arithmetical [28]. Examples [28, 65, 68] show that this is the 

only restriction on the cardinality of this set for countable theories. 

The theory of groups is an example for which all questions in the diagram are 

relevant. As previously mentioned, P. Eklof and G. Sabbagh [25] proved in 1969 

that there was no model-companion. A. Macintyre proved in 1970 that g"r~ ~3r 

and g%~ ~-r [37]. Subsequently, he proved that T ~ and T F are distinguished by 

an V4 sentence. In 1972 the author found a principal existential generator for the 

quantifier-free type of having infinite order [35, 72]. This leads to the following 

interpretation of second order arithmetic. Let G be an existentially complete 

group. This group has an element a of infinite order. The set {a" : n ~ 0} is 

definable, and there are definable operations O and @ such that a " @  a "  = 

a"+" and a" ~ a " = a"". Moreover, there is a well determined collection ~ of 

subsets of {a" : n _>- 0}. The set {a" : n _-> O} with the operations G and @ and the 

collection 0 ~ of subsets forms a definable structure N~ for second order 

arithmetic. This second order structure is uniquely determined independently of 

the choice of the element a of infinite order, because all elements of infinite 

order are conjugate. 

THEOREM D [35, 72]. I f  G is an infinitely generic group, then X~ is a second 

order elementary substructure of the standard model N for second order arithmetic. 
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Hence, rTh:(X)l rT"], where Th2 denotes the second order theory. In fact, 

[Th,,(~)] ~, [T r ] .  

THEOREM E [35, 72]. There are 2 -0 elementary equivalence classes of  existen- 

tially complete groups distinghished by V4 sentences. 

Analogous results have been obtained for arithmetic [34, 35] and division rings 

[35, 72]. 
O. V. Belegradek, a Russian mathematician, has communicated the follow- 

ing, more recent results on existentially complete groups to the author: 1) there 

are 2 ,0 elementary equivalence classes of existentially complete groups distin- 
guished by V3 sentences: 2) T r and T s are distinguished by an V3 sentence; and 

3) an existentially complete group is finitely generic if and only if it is a model 
of T t. 

Appendix 

A list of references according to topic appears below. 

1. General theory of forcing, model-companions, and existentially complete 

structures: for a comprehensive discussion, see [35]; other references: [3, 8, 14, 

15, 18-22, 27, 28, 36, 38, 41, 51-55, 62, 64, 65, 68, 71, 72, 73]. 

2. Arithmetic: [3, 34, 35, 45, 56]. 
3. Modules: [25, 26, 58-61]. 
4. Abelian groups: [23, 24, 25]. 
5. Groups: [25, 37, 38, 40, 42, 35, 72]. 
6. Division rings: [7-9, 35, 39, 40, 42, 72]. 

7. Commutative rings: [17]. 
8. Commutative rings without nilpotent elements: [13, 67]. 

9. Metabelian groups: [63]. 
10. Nilpotent groups: [66]. 

11. Lie algebras: [43, 44]. 

Remarks  added in proof 

1) It is implicit in Section 3 that a finitely generated model which has a finite 

presentation relative to one finite set of generators has a finite presentation 

relative to any finite set of generators. This is easily verified. Assume that ~R is 
generated by elements al, �9 �9 ", a, with finite presentation 

{pl (v l , ' "  ", v.) , '"  " , p k ( v l , "  ", v.)}. Suppose that b . . - . ,  b., generate ~R also. 
Then there are terms t,(v~,. . ., v . ) , .  . ., t , . ( v . -  . ., v . )  such that bj = t i ( a . "  ", a . )  
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for j = 1 , . . . ,  m, and there are terms u~(v~,..., vm),. . . ,  un(vl,-" ", vm) such that 

a, = u~(b~,...,bm) for i = 1 , . - . ,  n. A presentation for ~ relative to the 

generators b l , "  ", b,, is 

{p,(u~(v~,..., vm), '" ,  u,(v~,.. . ,  vm)):i = 1 , . . . ,  k}t_J 

{v,  = t i (ul(vl ," ", v , , ) , . . . ,  u , ( v l , . . . ,  v , , ) ) :  i = 1 , - . - , m } .  

2) G. Sabbagh has proven that every universal theory with finite presentations 

is in fact universal Horn. Thus, a theory is universal with finite presentations if 

and only if it is universal Horn. 

3) The assumption in Theorem 5 that T has finite presentations can be 

weakened so as to include non-Horn theories such as the theory of integral 

domains. This improvement will appear in a forthcoming paper by the author in 

which Theorem 5 is generalized to theories which may not have the amalgama- 

tion property. 

4) The proof of Corollary 4 to Theorem 5 referred to Higman's Theorem for 

the existence of a finitely presented group with a finitely generated, nonfinitely 

presentable subgroup. G. Sabbagh has kindly pointed out that such groups were 

known prior to the appearance of Higman's Theorem (see Section 4 of G. 

Baumslag, W. W. Boone and B. H. Neumann, Some unsolvable problems about 
elements and subgroups of groups, Math. Scand. 7 (1959), 191-201). 
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